Построение точек по координатам x y z. Построение комплексного чертежа точки

Построение точек по координатам x y z. Построение комплексного чертежа точки

Глава 6. ПРОЕКЦИИ ТОЧКИ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ

§ 32. Комплексный чертеж точки

Чтобы построить изображение предмета, сначала изображают отдельные его элементы в виде простейших элементов пространства. Так, изображая геометрическое тело, следует построить его вершины, представленные точками; ребра, представленные прямыми и кривыми линиями; грани, представленные плоскостями и т.д

Правила построения изображений на чертежах в инженерной графике основываются на методе проекций. Одно изображение (проекция) геометрического тела не позволяет судить о его геометрической форме или форме простейших геометрических образов, составляющих это изображение. Таким образом, нельзя судить о положении точки в пространстве по одной ее проекции; положение ее в пространстве определяется двумя проекциями.

Рассмотрим пример построения проекции точки А, расположенной в пространстве двугранного угла (рис. 60). Одну из плоскостей проекции расположим горизонтально, назовем ее горизонтальной плоскостью проекций и обозначим буквой П 1 . Проекции элементов


пространства на ней будем обозначать с индексом 1: А 1 , а 1 , S 1 ... и называть горизонтальными проекциями (точки, прямой, плоскости).

Вторую плоскость расположим вертикально перед наблюдателем, перпендикулярно первой, назовем ее вертикальной плоскостью проекций и обозначим П 2 . Проекции элементов пространства на ней будем обозначать с индексом 2: А 2 , 2 и называть фронтальными проекциями (точки, прямой, плоскости). Линию пересечения плоскостей проекций назовем осью проекций.

Спроецируем точку А ортогонально на обе плоскости проекций:

АА 1 _|_ П 1 ;AА 1 ^П 1 =A 1 ;

АА 2 _|_ П 2 ;AА 2 ^П 2 =A 2 ;

Проецирующие лучи АА 1 и АА 2 взаимно перпендикулярны и создают в пространстве проецирующую плоскость АА 1 АА 2 , перпендикулярную обеим сторонам проекций. Эта плоскость пересекает плоскости проекций по линиям, проходящим через проекции точки А.

Чтобы получить плоский чертеж, совместим горизонтальную плоскость проекций П 1 с фронтальной плоскостью П 2 вращением вокруг оси П 2 /П 1 (рис. 61, а). Тогда обе проекции точки окажутся на одной линии, перпендикулярной оси П 2 /П 1 . Прямая А 1 А 2 , соединяющая горизонтальную А 1 и фронтальную А 2 проекции точки, называется вертикальной линией связи.

Полученный плоский чертеж называется комплексным чертежом. Он представляет собой изображение предмета на нескольких совмещенных плоскостях. Комплексный чертеж, состоящий из двух ортогональных проекций, связанных между собой, называется двухпроекционным. На этом чертеже горизонтальная и фронтальная проекции точки всегда лежат на одной вертикальной линии связи.

Две связанные между собой ортогональные проекции точки однозначно определяют ее положение относительно плоскостей проекций. Если определить положение точки а относительно этих плоскостей (рис. 61, б) ее высотой h (АА 1 =h) и глубиной f(AA 2 =f), то эти величины на комплексном чертеже существуют как отрезки вертикальной линии связи. Это обстоятельство позволяет легко реконструировать чертеж, т. е. определить по чертежу положение точки относительно плоскостей проекций. Для этого достаточно в точке А 2 чертежа восстановить перпендикуляр к плоскости чертежа (считая ее фронтальной) длиной, равной глубине f . Конец этого перпендикуляра определит положение точки А относительно плоскости чертежа.

60.gif

Изображение:

61.gif

Изображение:

7. Вопросы для самопроверки

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

4. Как называется расстояние, определяющее положение точки относительно плоскости проекций П 1 , П 2 ?

7. Как построить дополнительную проекцию точки на плоскости П 4 _|_ П 2 , П 4 _|_ П 1 , П 5 _|_ П 4 ?

9. Как можно построить комплексный чертеж точки по ее координатам?

33. Элементы трехпроекционного комплексного чертежа точки

§ 33. Элементы трехпроекционного комплексного чертежа точки

Для определения положения геометрического тела в пространстве и получения дополнительных сведений на их изображениях может возникнуть необходимость в построении третьей проекции. Тогда третью плоскость проекций располагают справа от наблюдателя перпендикулярно одновременно горизонтальной плоскости проекций П 1 и фронтальной плоскости проекций П 2 (рис. 62, а). В результате пересечения фронтальной П 2 и профильной П 3 плоскостей проекций получаем новую ось П 2 /П 3 , которая располагается на комплексном чертеже параллельно вертикальной линии связи A 1 A 2 (рис. 62, б). Третья проекция точки А - профильная - оказывается связанной с фронтальной проекцией А 2 новой линией связи, которую называют горизонталь-

Рис. 62

ной. Фронтальная и профильная проекции точки всегда лежат на одной горизонтальной линии связи. Причем A 1 A 2 _|_ А 2 А 1 и А 2 А 3 , _| _ П 2 /П 3 .

Положение точки в пространстве в этом случае характеризуется ее широтой - расстоянием от нее до профильной плоскости проекций П 3 , которое обозначим буквой р.

Полученный комплексный чертеж точки называется трехпроек-ционным.

В трехпроекционном чертеже глубина точки АА 2 проецируется без искажений на плоскости П 1 и П 2 (рис. 62, а). Это обстоятельство позволяет построить третью - фронтальную проекцию точки А по ее горизонтальной А 1 и фронтальной А 2 проекциям (рис. 62, в). Для этого через фронтальную проекцию точки нужно провести горизонтальную линию связи A 2 A 3 _|_A 2 A 1 . Затем в любом месте на чертеже провести ось проекций П 2 /П 3 _|_ А 2 А 3 , измерить глубину f точки на горизонтальном поле проекции и отложить ее по горизонтальной линии связи от оси проекций П 2 /П 3 . Получим профильную проекцию А 3 точки А.

Таким образом, на комплексном чертеже, состоящем из трех ортогональных проекций точки, две проекции находятся на одной линии связи; линии связи перпендикулярны соответствующим осям проекций; две проекции точки вполне определяют положение ее третьей проекции.

Необходимо отметить, что на комплексных чертежах, как правило, не ограничивают плоскости проекций и положение их задают осями (рис. 62, в). В тех случаях, когда условиями задачи этого не требу-

ется, проекции точек могут быть даны без изображения осей (рис. 63, а, б). Такая система называется безосновой. Линии связи могут также проводиться с разрывом (рис. 63, б).

62.gif

Изображение:

63.gif

Изображение:

34. Положение точки в пространстве трехмерного угла

§ 34. Положение точки в пространстве трехмерного угла

Расположение проекций точек на комплексном чертеже зависит от положения точки в пространстве трехмерного угла. Рассмотрим некоторые случаи:

  • точка расположена в пространстве (см. рис. 62). В этом случае она имеет глубину, высоту и широту;
  • точка расположена на плоскости проекций П 1 - она не имеет высоты, П 2 - не имеет глубины, Пз - не имеет широты;
  • точка расположена на оси проекций, П 2 /П 1 не имеет глубины и высоты, П 2 /П 3 - не имеет глубины и широты и П 1 /П 3 не имеет высоты и широты.

35. Конкурирующие точки

§ 35. Конкурирующие точки

Две точки в пространстве могут быть расположены по-разному. В отдельном случае они могут быть расположены так, что проекции их на какой-нибудь плоскости проекций совпадают. Такие точки называются конкурирующими. На рис. 64, а приведен комплексный чертеж точек А и В. Они расположены так, что проекции их совпадают на плоскости П 1 [А 1 == В 1 ]. Такие точки называются горизонтально конкурирующими. Если проекции точек A и В совпадают на плоскости

П 2 (рис. 64, б), они называются фронтально конкурирующими. И если проекции точек А и В совпадают на плоскости П 3 [А 3 == B 3 ] (рис. 64, в), они называются профильно конкурирующими.

По конкурирующим точкам определяют видимость на чертеже. У горизонтально конкурирующих точек будет видима та, у которой больше высота, у фронтально конкурирующих - та, у которой больше глубина, и у профильно конкурирующих - та, у которой больше широта.

64.gif

Изображение:

36. Замена плоскостей проекций

§ 36. Замена плоскостей проекций

Свойства трехпроекционного чертежа точки позволяют по горизонтальной и фронтальной ее проекциям строить третью на другие плоскости проекций, введенные взамен заданных.

На рис. 65, а показаны точка А и ее проекции - горизонтальная А 1 и фронтальная А 2 . По условиям задачи необходимо произвести замену плоскостей П 2 . Новую плоскость проекции обозначим П 4 и расположим перпендикулярно П 1 . На пересечении плоскостей П 1 и П 4 получим новую ось П 1 /П 4 . Новая проекция точки А 4 будет расположена на линии связи, проходящей через точку А 1 и перпендикулярно оси П 1 /П 4 .

Поскольку новая плоскость П 4 заменяет фронтальную плоскость проекции П 2 , высота точки А изображается одинаково в натуральную величину и на плоскости П 2 , и на плоскости П 4 .

Это обстоятельство позволяет определить положение проекции A 4 , в системе плоскостей П 1 _|_ П 4 (рис. 65, б) на комплексном чертеже. Для этого достаточно измерить высоту точки на заменяемой плоско-

сти проекции П 2 , отложить ее на новой линии связи от новой оси проекций - и новая проекция точки А 4 будет построена.

Если новую плоскость проекций ввести взамен горизонтальной плоскости проекций, т. е. П 4 _|_ П 2 (рис. 66, а), тогда в новой системе плоскостей новая проекция точки будет находиться на одной линии связи с фронтальной проекцией, причем А 2 А 4 _|_. В этом случае глубина точки одинакова и на плоскости П 1 , и на плоскости П 4 . На этом основании строят А 4 (рис. 66, б) на линии связи А 2 А 4 на таком расстоянии от новой оси П 1 /П 4 на каком А 1 находится от оси П 2 /П 1 .

Как уже отмечалось, построение новых дополнительных проекций всегда связано с конкретными задачами. В дальнейшем будет рассмотрен ряд метрических и позиционных задач, решаемых с применением метода замены плоскостей проекций. В задачах, где введение одной дополнительной плоскости не даст желаемого результата, вводят еще одну дополнительную плоскость, которую обозначают П 5 . Ее располагают перпендикулярно уже введенной плоскости П 4 (рис. 67, а), т. е. П 5 П 4 и производят построение, аналогичное ранее рассмотренным. Теперь расстояния измеряют на заменяемой второй из основных плоскостей проекций (на рис. 67, б на плоскости П 1) и откладывают их на новой линии связи А 4 А 5 , от новой оси проекций П 5 /П 4 . В новой системе плоскостей П 4 П 5 получают новый двухпроекционный чертеж, состоящий из ортогональных проекций А 4 и А 5 , связанных линией связи

При построении точки по заданным координатам, необходимо помнить, что в соответствии с правилами черчения масштаб по оси Ох уменьшается в 2 раза в сравнении с масштабом по осями Оу и Оz.

1.Построить точкy: А(2; 1; 3) х А = 2; у A = 1; z A = 3

а) обычно в первую очередь строят проекцию точки на плоскость Оху. Отметить точки х A =2 и у A =1 и провести через них прямые, параллельные осям Ох и Оу. Точка их пересечения имеет координаты (2;1; 0) Построена точка A 1 (2;1; 0.)

А(2; 1; 3)

0 у A =1

х A =2 у

A 1 (2;1; 0) 0 у A =1 у

х х A =2 A 1 (2;1; 0)

х

б) далее из точки A 1 (2;1; 0) восстанавливают перпендикуляр к плоскости Оху (проводят прямую, параллельную оси Оz ) и откладывают на ней отрезок, равный трем: z A = 3.

2.Построить точкy: B(3; - 2; 1) х B = 3; у B = -2; Z B = 1

z

у B = - 2

B(3; -2; 1) О у

B 1 (3;-2) х B =3

х

3. Построить точку C(-2; 1; 3 ) zC (-2; 1; 3)

Х А = -2; Y A = 1; Z A = 3

х C = - 2 C 1 (-2;1;0)

у A =1 у

4.Дан куб. А...D 1 , ребро которого равно1 . Начало координат совпадает с точкой В, ребра ВА, ВС и ВВ 1 совпадают с положительными лучами осей координат. Назвать координаты всех остальных вершин куба. Вычислить диагональ куба.

z

АВ = ВС = ВВ 1 ВD 1 = =

В 1 (0;0;1) С 1 (0;1;1) = =

А 1 (1;0;1) D 1 (1;1;1)

В(0;0;0) С(0;1;0) у

А(1;0;0) D(1;1;0)

5.Постройте точки А(1;1;-1) и В(1; -1;1). Пересекает ли отрезок ось координат? плоскость координат? проходит ли отрезок через начало координат? Найдите координаты точек пересечения, если они есть. z Точки лежат в плоскости, перпендикулярной оси Ох.

Отрезок пересекает ось Ох и плоскость хОу в точке

В(1; -1;1)

0(0;0;0)

С(1;0;0)

А(1;1;-1)

6.Найти расстояние между двумя точками: А(1;2;3) и В(-1;1;1).

а) АВ = = = =3

б) С(3;4;0) и D(3; -1;2).

СD = = =

В пространстве для определения координат середины отрезка вводится третья координата.

В (х В; у В;z B)

С ( ; ; )

А(х А; у А; z A)

7.Найти координаты С середины отрезков: а) АВ, если А(3; – 2; – 7), В(11; – 8; 5),

х М = = 7; у М = = - 5; z М = = - 1; С(7; - 5; - 1)

8. Координаты точки А(х;у;z). Напишите координаты точек, симметричных данной относительно:

а) координатных плоскостей

б) координатных прямых



в) начала координат

а) Если точка А 1 симметрична данной относительно координатной плоскости хОу, то разница в
координатах точек будет только в знаке координаты z: А 1 (х;у;-z).

точка А 2 Охz, тогда А 2 (х; -у;z).

точка А 3 симметрична данной относительно плоскости Оуz, тогда А 2 (-х; у;z).

б) Если точка А 4 симметрична данной относительно координатной прямой Ох, то разница в
координатах точек будет только в знаках координат у и z: А 4 (х; -у;-z).

точка А 5 Оу, тогда А 5 (-х; у; -z).

точка А 6 симметрична данной относительно прямой Оz, тогда А 6 (-х; -у; z).

в) Если точка А 7 симметрична данной относительно начала координат, то А 6 (-х; -у; -z).

ПРЕОБРАЗОВАНИЕ КООРДИНАТ

Переход от одной системы координат в другую называется преобразованием системы координат.

Мы будем рассматривать два случая преобразования системы координат, и выведем формулы зависимости между координатами произвольной точки плоскости в разных системах координат. (Методика преобразованием системы координат аналогична преобразованию графиков).

1.Параллельный перенос . В этом случае меняется положение начала координат, а направление осей и масштаб остаются неизменными.

Если начало координат переходит в точку 0 1 с координатами 0 1 (х 0 ; у 0), то для точки М(х;у) связь между координатами системы х0у и х 0 0у 0 выражена формулами:

х = х 0 + х"

у = у 0 + у"

Полученные формулы позволяют найти старые координаты по известным новым х" и у" и наоборот.

у М(х;у) М(х"; у")


0 1 (х 0 ; у 0),х"

х 0 х"

2.Поворот осей координат . В этом случае обе оси поворачиваются на один и тот же угол , а начало координат и масштаб остаются неизменными.

М(х;у)

у 1 х 1

Координаты точки М в старой системе М(х;у) и М(х"; у") - в новой. Тогда полярный радиус в обеих системах одинаков, а полярные углы соответственно равны + и , где - полярный угол в новой системе координат.

По формулам перехода от полярных координат к прямоугольным имеем:

x = rcos( + ) x = rcos · cos - rsin ·sin

y = rsin(+ ) y = rcos · sin + rsin · cos

Но rcos = х" и rsin = у" , поэтому

x = х"· cos - у"·sin

y = х"· sin + у"· cos

Письменно ответьте на вопросы:

  1. Что называется прямоугольной системой координат на плоскости? в пространстве?
  2. Какая ось называется осью аппликат? Ординат? Абсцисс?
  3. Каково обозначение единичных векторов на осях координат?
  4. Что называется ортом?
  5. Как вычисляется в прямоугольной системе координат длина отрезка, заданного координатами своих концов?
  6. Как вычисляются координаты середины отрезка, заданного координатами своих концов?
  7. Что называется полярной системой координат?
  8. Какова связь между координатами точки в прямоугольной и полярной системах координат?

Выполните задания:

1. На каком расстоянии от координатных плоскостей находится точка А(1; -2; 3)

2. На каком расстоянии находится точка А(1; -2; 3) от координатных прямых а) Оу; б) Оу; в) Оz;

3. Какому условию удовлетворяют координаты точек пространства, одинаково удаленных:

а) от двух координатных плоскостей Оху и Оуz; АВ

б) от всех трех координатных плоскостей

4. Найдите координаты точки М середины отрезка АВ, А(-2; -4; 1); В(0; -1; 2) и назовите точку, симметричную точки М, относительно а) оси Ох

б) оси Оу

в) оси Оz.

5. Дана точка В(4; - 3; - 4). Найдите координаты оснований перпендикуляров, опущенных из точки на оси координат и координатные плоскости.

6.На оси Оу найти точку, равноудаленную от двух точек А(1; 2; - 1) и В(-2; 3; 1).

7. В плоскости Охz найдите точку, равноудаленную от трех точек А(2; 1; 0); В(-1; 2; 3) и С(0;3;1).

8. Найдите длины сторон треугольника АВС и его площадь, если координаты вершин: А(-2; 0; 1), В(8; - 4; 9), С(-1;2; 3).

9. Найдите координаты проекций точек А(2; -3; 5); В (3;-5; ); С(- ; - ; - ).

10. Даны точки А(1; -1; 0) и В(-3; - 1; 2). Вычислите расстояние от начала координат до данных точек.

ВЕКТОРЫ В ПРОСТРАНСТВЕ. ОСНОВНЫЕ ПОНЯТИЯ

Все величины, с которыми имеют дело в физике, технике, обыденной жизни разделяют на две группы. Первые полностью характеризуются своим численным значением: температура, длина, масса, площадь, работа. Такие величины называются скалярными.

Другие величины, например, сила, скорость, перемещение, ускорение и т.д. определяются не только своим числовым значением, но и направлением. Называются такие величины векторными , или векторами. Векторная величина геометрически изображается в виде вектора.

Вектор -это направленный прямолинейный отрезок, т.е. отрезок, имеющий
определенную длину и направление.

Инструкция

Постройте три координатные плоскости, чтобы иметь начало отсчета в точке О. На чертеже плоскости проекций в виде трех осей – ох, оу и оz, причем ось оz направлена вверх, ось оу – вправо. Чтобы построить последнюю ось ох, разделите угол между осями оу и оz напополам (если вы рисуете на листе в клетку, просто проведите эту ось ).

Обратите внимание, если координаты точки А записаны в виде трех в скобках (а, b, с), то первое число а – от плоскости х, второе b – от у, третье c – от z. Сначала возьмите первую координату а и отметьте ее на оси ох, влево и вниз, если число а положительное, вправо и вверх, если оно отрицательное. Полученную букву назовите В.

Затем отложите последнее число с вверх по оси оz, если оно положительное, и вниз по этой же оси, если отрицательное. Отметьте полученную точку буквой D.

Из полученных точек проведите проекций искомой точки на плоскостях. То есть в точке В проведите две прямые, которые будут параллельны осям оу и oz, в точке С проведите прямые, параллельные осям ох и oz, в точке D – прямые, параллельные ох и оу.

Если одна из координат точки равна нулю, точка лежит в одной из плоскостей проекций. В таком случае просто отметьте известные координаты на плоскости и найдите точку пересечения их проекций. Будьте внимательны при построении точек с координатами (а, 0, с) и (а, b, 0), не забывайте, что проекция на ось ох осуществляется под углом в 45⁰.

Видео по теме

Источники:

  • по координатам построить

Совет 2: Как проверить, что точки не лежат на одной прямой

На основании аксиомы, описывающей свойства прямой : какова бы ни была прямая, есть точки , принадлежащие и не принадлежащие ей. Поэтому вполне логично, что не все точки будут лежать на одной прямой линии.

Вам понадобится

  • - карандаш;
  • - линейка;
  • - ручка;
  • - тетрадь;
  • - калькулятор.

Инструкция

В том случае, если (x - x1) * (y2 - y1) - (x2 - x1) * (y - y1) будет меньше нуля, точка К располагается выше или левее линии. Другими словами, только в том случае, если уравнение вида (x - x1) * (y2 - y1) - (x2 - x1) * (y - y1) = 0 справедливо, точки А, В и К будут расположены на одной прямой .

В остальных случаях лишь две точки (А и В), которые, по условию задания, лежат на прямой , будут ей принадлежать: через третью точку (точку К) прямая проходить не будет.

Рассмотрите второй вариант принадлежности точки примой: на этот раз нужно проверить принадлежит ли точка С(x,y) отрезку с концевыми точками В(x1,y1) и А(x2,y2), который является частью прямой z.

Точки рассматриваемого отрезка опишите уравнением pOB+(1-p)OА=z, при условии, что 0≤p≤1. ОВ и ОА являются векторами. Если есть число p, которое больше или равно 0, но меньше или равно 1, то pOB+(1-p)OА=С, а , точка С будет лежать на отрезке АВ. В противном случае, данная точка не будет принадлежать этому отрезку.

Распишите равенство pOB+(1-p)OА=С покоординатно: px1+(1-p)x2=x и py1+(1-p)y2=y.

Найдите из первого число р и подставьте его значение во второе равенство. Если равенство будет соответствовать условиям 0≤p≤1, то точка С принадлежит отрезку АВ.

Обратите внимание

Убедитесь в правильности расчетов!

Полезный совет

Чтобы найти k - угловой коэффициент прямой, нужно (y2 - y1)/(x2 - x1).

Источники:

  • Алгоритм проверки принадлежности точки многоугольнику. Метод трассировки луча в 2019

Трехмерное пространство состоит из трех основных понятий, которые вы постепенно изучаете в школьной программе: точка, прямая, плоскость. В ходе работы с некоторыми математическими величинами вам может понадобиться объединить эти элементы, например, построить плоскость в пространстве по точке и прямой.

Инструкция

Чтобы понять алгоритм построения плоскостей в пространстве, обратите внимание на некоторые аксиомы, которые описывают свойства плоскости или плоскостей. Первое: через три точки, не лежащие на одной прямой, проходит плоскость, при этом только одна. Стало быть, для построения плоскости вам достаточно трех точек, удовлетворяющих по положению аксиоме.

Второе: через любые две точки проходит прямая, при этом только одна. Соответственно, построить плоскость можно через прямую и точку, не лежащую на ней. Если от обратного: любая прямая содержит, как минимум, две точки, через которые она проходит, если известна еще одна точка, не на этой прямой, через эти три точки можно построить прямую, как в пункте первом. Каждая точка этой прямой будет принадлежать плоскости.

Третье: через две пересекающиеся прямые проходит плоскость, при этом только одна. Пересекающиеся прямые могут образовать только одну общую точку. Если в пространстве, они будут иметь бесконечное количество общих точек, и, следовательно, составлять одну прямую. Когда вам известны две прямые, имеющие точку пересечения, вы можете построить не более одной плоскости, проходящей через эти прямые.

Четвертое: через две параллельные прямые можно провести плоскость, при этом только одну. Соответственно, если вам известно, что прямые параллельны, вы можете провести через них плоскость.

Пятое: через прямую можно провести бесконечное количество плоскостей. Все эти плоскости могут быть рассмотрены как вращение одной плоскости вокруг заданной прямой, или как бесконечное множество плоскостей, имеющих одну линию пересечения.

Итак, построить плоскость вы можете, если найдены все элементы, которые определяют ее положение в пространстве: три точки, не лежащие на прямой, прямая и точка, не принадлежащая прямой, две пересекающиеся или две параллельные прямые.

Видео по теме

Знаете ли вы, что организм человека - это мини-электростанция? Каждый из нас вырабатывает небольшое количество электроэнергии. Это происходит как в движении, так и в покое - тогда выработка электричества происходит во внутренних органах, одним из которых является сердце.

Одним из медицинских исследований, позволяющих определить состояние сердца, является ЭКГ. Кардиолог снимает электрокардиограмму, чтобы узнать, расположено в грудной клетке, как работают предсердия, клапаны и желудочки, их форма и нет ли функциональных изменений. Один из важнейших показателей ЭКГ - направленность электрической оси сердца.

Что такое ось сердца и как ее найти?

Сердечную ось (как и ось земную) невозможно увидеть или потрогать. Она определяется только с помощью электрокардиографа, ведь он фиксирует электрическую активность сердца. Когда клетки сердечной мышцы напрягаются и расслабляются, повинуясь импульсам, идущим от нервной системы, они образуют электрическое поле, центром которого и является ЭОС (электрическая ось сердца).

Но если заглянуть в анатомический атлас, можно провести вертикальную линию, которая поделит сердце на две равные части - примерно так и располагается ось сердца. Отсюда можно сделать вывод, что ЭОС совпадает с так называемой анатомической осью. Конечно, каждый человек индивидуален, поэтому и электрическая ось у разных людей может располагаться по-иному (к примеру, если отталкиваться от серднестатистического значения, то у худого человека ЭОС расположена вертикально, а у тучного - горизонтально).

Когда сердечная ось меняет положение?

Сняв ЭКГ и узнав, как располагается ЭОС, кардиолог может сказать вам, как в грудной клетке , здоров ли миокард (сердечная ), как нервные импульсы проходят к разным отделам сердца.

Если электрокардиограмма показывает, что электрическая ось вправо или влево, это укажет врачу на какой-либо патологический процесс. Отклонение вправо может навести на подозрения о неправильном положении сердца (его смещение может быть врожденным или возникать вследствие расширения аорты, возникновения новообразований и прочих патологий). Кроме того, отклонение ЭОС - признак опасных для жизни состояний: декстрокардии, блокады пучка Гиса, инфаркта миокарда (его передней стенки).

Если же ЭОС значительно отклонена в левую сторону, это может быть признаком кардиомиопатии, гипертрофии некоторых отделов сердца, верхушечного инфаркта или врожденного порока.

Ряд заболеваний сердца может до поры протекать бессимптомно. Поэтому так важно периодически проходить медосмотр, одной из составляющих которого является ЭКГ. Ведь болезнь легче предупредить, . А болезни сердца нужно в обязательном порядке, ведь они - прямая угроза жизни.

Словесная форма

Графическая форма

1. Отложить на осях X, Y, Ζ соответствующие координаты точки А. Получаем точки A x , A y , A z

2. Горизонтальная проекция А 1 находится на пересечении линий связи из точек A x и A y , проведенных параллельно осям X и Y

3. Фронтальная проекция А 2 находится на пересечении линий связи из точек A x и A z , проведенных параллельно осям X и Ζ

4. Профильная проекция А 3 находится на пересечении линий связи из точек A z и A y , проведенных параллельно осям Ζ и Y

3.2. Положение точки относительно плоскостей проекций

Положение точки в пространстве относительно плоскостей проекций определяется её координатами. Координатой Х определяется удалённость точки от плоскости П 3 (проекция на П 2 или П 1), координатой У – удалённость от плоскости П 2 (проекция на П 3 или П 1), координатой Z – удаленность от плоскости П 1 (проекция на П 3 или П 2). В зависимости от значения этих координат точка может занимать в пространстве как общее, так и частное положение по отношению к плоскостям проекций (рис. 3.1).

Рис. 3.1. Классификация точек

Т очка общего положения . Координаты точки общего положения не равны нулю (x ≠0, y ≠0, z ≠0 ), и в зависимости от знака координаты точка может располагаться в одном из восьми октантов (табл. 2.1).

На рис. 3.2 даны чертежи точек общего положения. Анализ их изображений позволяет сделать вывод, что они располагаются в следующих октантах пространства: А(+X;+Y; +Z(Iоктанту;B(+X;+Y;-Z(IVоктанту;C(-X;+Y; +Z(Vоктанту;D(+X;+Y; +Z(IIоктанту.

Точки частного положения . Одна из координат у точки частного положения равна нулю, поэтому проекция точки лежит на соответствующем поле проекций, другие две – на осях проекций. На рис. 3.3 такими точками являются точки А, В,C,D,G.AП 3 ,то точка Х А =0; ВП 3 ,то точка Х В =0; СП 2 ,то точкаY C =0;DП 1 ,то точкаZ D =0.

Точка может принадлежать сразу двум плоскостям проекций, если она лежит на линии пересечения этих плоскостей – оси проекций. У таких точек не равна нулю только координата на этой оси. На рис. 3.3 такой точкой является точкаG(GOZ,то точка Х G =0,Y G =0).

3.3. Взаимное положение точек в пространстве

Рассмотрим три варианта взаимного расположения точек в зависимости от соотношения координат, определяющих их положение в пространстве.

    На рис. 3.4 точки AиBимеют различные координаты.

Их взаимное расположение можно оценить по удаленности к плоскостям проекций: Y А >Y В, тогда точкаAрасположена дальше от плоскости П 2 и ближе к наблюдателю, чем точкаB; Z А >Z В, тогда точкаAрасположена дальше от плоскости П 1 и ближе к наблюдателю, чем точкаB; X А

    На рис. 3.5 представлены точки A, B, С, D, у которых одна из координат совпадает, а две другие отличаются.

Их взаимное расположение можно оценить по удалённости к плоскостям проекций следующим образом:

Y А =Y В =Y D , то точки А, В и D равноудалены от плоскости П 2 , и их горизонтальные и профильные проекции расположены соответственно на прямых [А 1 В 1 ]llОХ и [А 3 В 3 ]llOZ. Геометрическим местом таких точек служит плоскость, параллельная П 2 ;

Z А =Z В =Z С, то точки А, В и С равноудалены от плоскости П 1 , и их фронтальные и профильные проекции расположены соответственно на прямых [А 2 В 2 ]llОХ и [А 3 С 3 ]llOY. Геометрическим местом таких точек служит плоскость, параллельная П 1 ;

X А =X C =X D , то точки А, C и D равноудалены от плоскости П 3 и их горизонтальные и фронтальные проекции расположены соответственно на прямых [А 1 C 1 ]llOY и [А 2 D 2 ]llOZ . Геометрическим местом таких точек служит плоскость, параллельная П 3 .

3. Если у точек равны две одноименные координаты, то они называются конкурирующими . Конкурирующие точки расположены на одной проецирующей прямой. На рис. 3.3 даны три пары таких точек, у которых: X А =X D ; Y А =Y D ; Z D > Z А; X A =X C ; Z A =Z C ; Y C > Y A ; Y A =Y B ; Z A =Z B ; X B > X A .

Различают горизонтально конкурирующие точки А и D, расположенные на горизонтально проецирующей прямой АD, фронтально конкурирующие точки A и C, расположенные на фронтально проецирующей прямой AC, профильно конкурирующие точки A и B, расположенные на профильно проецирующей прямой AB.

Выводы по теме

1. Точка – линейный геометрический образ, одно из основных понятий начертательной геометрии. Положение точки в пространстве можно определить её координатами. Каждая из трёх проекций точки характеризуется двумя координатами, их название соответствует названиям осей, которые образуют соответствующую плоскость проекций: горизонтальная – A 1 (XA; YA); фронтальная – A 2 (XA; ZA); профильная – A 3 (YA; ZA). Трансляция координат между проекциями осуществляется с помощью линий связи. По двум проекциям можно построить проекции точки либо с помощью координат, либо графически.

3. Точка по отношению к плоскостям проекций может занимать в пространстве как общее, так и частное положение.

4. Точка общего положения – точка, не принадлежащая ни одной из плоскостей проекций, т. е. лежащая в пространстве между плоскостями проекций. Координаты точки общего положения не равны нулю (x≠0,y≠0,z≠0).

5. Точка частного положения – это точка, принадлежащая одной или двум плоскостям проекций. Одна из координат у точки частного положения равна нулю, поэтому проекция точки лежит на соответствующем поле плоскости проекций, другие две – на осях проекций.

6. Конкурирующие точки – точки, одноименные координаты которых совпадают. Существуют горизонтально конкурирующие точки, фронтально конкурирующие точки, профильно конкурирующие точки.

Ключевые слова

    Координаты точки

    Точка общего положения

    Точка частного положения

    Конкурирующие точки

Способы деятельности, необходимые для решения задач

– построение точки по заданным координатам в системе трех плоскостей проекций в пространстве;

– построение точки по заданным координатам в системе трех плоскостей проекций на комплексном чертеже.

Вопросы для самопроверки

1. Как устанавливается связь расположения координат на комплексном чертеже в системе трех плоскостей проекций П 1 П 2 П 3 с координатами проекций точек?

2. Какими координатами определяется удалённость точек до горизонтальной, фронтальной, профильной плоскостей проекций?

3. Какие координаты и проекции точки будут изменяться, если точка перемещается в направ­лении, перпендикулярном профильной плоско­сти проекций П 3 ?

4. Какие координаты и проекции точки будут изменяться, если точка перемещается в направ­лении, параллельном оси OZ?

5. Какими координатами, определяется горизонтальная (фронтальная, профильная) проекция точки?

7. В каком случае проекция точки совпадает с самой точкой пространства и где располагаются две другие проекции этой точки?

8. Может ли точка принадлежать одновременно трём плоскостям проекций и в каком случае?

9. Как называют точки, одноимённые проекции которых совпадают?

10. Каким образом можно определить, какая из двух точек ближе к наблюдателю, если их фронтальные проекции совпадают?

Задания для самостоятельного решения

1. Дать наглядное изображение точекA,B,C,Dотносительно плоскостей проекций П 1 , П 2 . Точки заданы своими проекциями (рис. 3.6).

2. Построить проекции точек А и В по их координатам на наглядном изображении и комплексном чертеже: А(13,5; 20), В(6,5; –20). Построить проекцию точки С, расположенной симметрично точке А относительно фронтальной плоскости проекций П 2 .

3. Построить проекции точек А, В, С по их координатам на наглядном изображении и комплексном чертеже: А(–20; 0; 0), В(–30; -20; 10), С(–10, –15, 0). Построить точку D, расположенную симметрично точке С относительно осиOХ.

Пример решения типовой задачи

Задача 1. Даны координатыX,Y,ZточекA,B,C,D,E,F(табл. 3.3)

Построить комплексные чертежи точек: А (15,30,0), В (30,25,15), С (30,10,15), D (15,30,20)

Решение задачи разделим на четыре этапа.

1. А (15,30,0); x A = 15 мм; y A = 30мм; z A = 0.

Как Вы думаете, если у точки А координата z A =0, то какое положение она занимает в пространстве?

Так выглядит комплексный чертеж точки А построенный по заданным координатам

Если у точки одна координата равна нулю, то точка принадлежит одной из плоскостей проекции. В данном случае у точки нет высоты: z = 0, следовательно точка А лежит в плоскости П 1 .

На комплексном чертеже оригинал (т.е. сама точка А ) не изображается, есть только ее проекции.

2. В (30,25,15) и С (30,10,15).

На втором этапе объединим построение двух точек.

x B = 30мм; x C = 30мм

y B = 35мм; y C = 10мм

z B = 15мм; z C = 15мм

У точек В и С : x B = x C = 30мм, z B = z C = 15мм

а) Координаты х точек одинаковы, следовательно, в системе П 1 – П 2 проекции точек лежат на одной линии связи (рис. 1.2),

б) Координаты z точек совпадают, (обе точки одинаково удалены от П 1 на 15мм,) т.е. они расположены на одной высоте, следовательно на П 2 проекции точек совпадают: В 2 = (С 2).

в) Для определения видимости относительно П 2 смотрим на рис. 1.3. Наблюдатель видит точку В , которая закрывает собой точку С , т.е. точка В расположена ближе к наблюдателю, поэтому на П 2 она видима. (См. М1 - 13 и 16).

В системе П 2 П 3 проекции точек также лежат на одной линии связи и видимость определяется по стрелке (рис. 1.2).

Точки В и С - называются фронтально конкурирующими.

3. D (15,30,20); x D = 15мм; y D = 30мм; z D = 20мм.

а) На этом комплексном чертеже (рис. 1.4) построены три проекции точки D (D 1 , D 2 , D 3).

Все три координаты имеют числовые значения, отличные от нуля, поэтому точка не принадлежит ни одной плоскости проекций.

б) Совместим пространственное изображение А и D (рис. 1.5). В системе П 1 -П 2 проекции точек А и D лежат на одной линии связи, только точка D выше точки А , следовательно D - видима, а А - невидима (видима на П 1 та точка, которая расположена выше)

На четвертом, завершающем этапе, соединим все три фрагмента комплексных чертежей точек А,В,С, D в один общий.

Точки А и D - называются горизонтально конкурирующими.

просмотров