Линейный тепловой пожарный извещатель. Линейный тепловой пожарный извещатель — виды и принцип работы

Линейный тепловой пожарный извещатель. Линейный тепловой пожарный извещатель — виды и принцип работы

Основные области применения термокабеля

Термокабель PHSC предназначен для использования на объектах имеющих большую протяженность и площадь, туннелях, в местах где затрудненно использование традиционных средств детекции возгораний. Является пожарным тепловым извещателем, позволяет определять расстояние до точки его активации с точностью до метра.

Термокабель PHSC нашел широкое применение в нефтегазовой промышленности, химическом производстве и металлургии. Значимой особенность производимого компанией Protectowire (Пожтехника - официальный российский дистрибьютер) термокабеля являются его условия эксплуатации: линейный тепловой извещатель PHSC может быть использован в зонах повышенного загрязнения, влажности, воздействия химических веществ, низкой температуры, термокабель может быть проложен в непосредственной близости от оборудования требующего пожарного/температурного контроля.

Типовые объекты на которых используется термокабель: кабельные трассы, тоннели, метро, ангары для самолетов, конвейерные транспортеры, элеваторы, трансформаторные подстанции, электрическое оборудование, хранилища большой площади, хранилища жидкого топлива, хранилища-холодильники, башенные градирни АЭС и ТЭЦ, пирсы, крытые мосты, гаражи, резервуары-хранилища.

Нормы прокладки термокабеля по НПБ 88-2001

  • Линейный тепловой извещатель - термокабель необходимо прокладывать в непосредственном контакте с пожарной нагрузкой.
  • Термокабель может быть установлен под перекрытием над пожарной нагрузкой в соответствии с нормами расстановки тепловых извещателей. См. таблицу ниже.
  • В приоритет следует ставить технические характеристики указанные производителем.
  • Расстояние от термокабеля до перекрытия должно быть не меньше 15 миллиметров.
  • При использовании на стелажах допускается прокладка по верхним ярусам.

Подробное описание термокабеля Protectowire PHSC

Линейный тепловой извещатель (термокабель) производства фирмы Protectowire (США) является кабелем, позволяющим обнаружить источник перегрева в любом месте на всем его протяжении. Термокабель представляет собой единый датчик непрерывного действия и применяется в тех случаях, когда условия эксплуатации не позволяют установку и использование обычных датчиков, а в условиях повышенной взрывоопасности применение термокабеля является оптимальным решением. Линейный тепловой извещатель Protectowire состоит из двух стальных проводников, каждый из которых имеет покрытие из термочувствительного полимера. Проводники с изолирующим покрытием скручены для создания между ними механического напряжения. Снаружи проводники покрыты защитной оболочкой и помещены в оплетку для защиты от воздействия неблагоприятных условий окружающей среды. Принцип действия термокабеля основан на разрушении изоляционного покрытия из термочувствительного полимера под действием давления проводников при достижении порогового значения температуры окружающей среды. При этом проводники замыкаются между собой. Это может происходить в любой точке перегрева на всем протяжении термокабеля. Для срабатывания кабеля не требуется ждать нагрева участка, имеющего определенную длину. Термокабель Protectowire позволяет генерировать сигнал тревоги при достижении температурного порога в любой точке на всем протяжении термокабеля.
Строение термокабеля Protectowire серии PHSC

В настоящее время существует пять типов термокабеля Protectowire, отличающихся друг от друга модельным типом и материалом внешней защитной оболочки, позволяющей эксплуатировать термокабель при различных условиях окружающей среды.

EPC - термокабель типа EPC имеет прочную экструзионную внешнюю защитную ПВХ оболочку, обеспечивающую надежную защиту кабеля при различных условиях окружающей среды. Термокабель данной серии является универсальным и хорошо подходит как для промышленного, так и для коммерческого использования. Оболочка термокабеля является огнестойкой и влагостойкой и
сохраняет хорошую гибкость при использовании в условии пониженных температур.

EPR - термокабель типа EPR имеет прочную огнестойкую внешнюю оболочку из полипропилена, устойчивую к воздействию ультрафиолетового излучения. Предназначен для широкого применения в промышленности и характеризуется высокой эластичностью, устойчивостью к химически-агрессивным средам, истиранию, воздействию атмосферных условий и надежностью функционирования при высоких температурах окружающей среды.

XLT - термокабель типа XLT имеет полимерную внешнюю оболочку и был специально разработан для использования при экстремально-низких температурах. Данная оболочка позволяет использование данного кабеля в холодильных складах, коммерческих морозильных камерах, неотапливаемых складских помещениях, а также в тяжелых климатических условиях Севера.

TRI - термокабель типа TRI (TRI-Wire™) является уникальным линейным тепловым извещателем, который позволяет получать два сигнала срабатывания (“Предтревога” и “Пожар”) в зависимости от установленных температурных порогов. Термокабель заключен в ПВХ оболочку и имеет характеристики, аналогичные серии EPC.

XCR - новинка на Российском рынке. Термокабель серии XCR заключен в высококачественную внешнюю оболочку из фторполимера. Данный тип извещателя специально разрабатывался для объектов, для защиты которых необходимо применять надежное, высокотехнологичное и экологически чистое оборудование. Главной особенностью термокабеля серии XCR является фторполимерная огнестойкая оболочка, с пониженным дымо и газовыделением, обеспечивающая высочайшую механическую прочность на истирание в широком диапазоне температур. Оболочка также обеспечивает защиту термочувствительного полимера от воздействия большого разнообразия кислот, щелочей, органических растворителей и простых газов. Кроме того, оболочка устойчива к воздействию солнечного света (в том числе к УФ-излучению), а также к различным метеоусловиям.

Данный вид термокабеля допускает использования при экстремально низких температурах и демонстрирует наилучшие показатели в сравнении с другими типами.

Преимущества использования термокабеля Protectowire:

  • Высокая чувствительность на всем протяжении извещателя.
  • Пять различных температурных диапазонов.
  • Высокая устойчивость к влажности, пыли и химическим реагентам.
  • Незаменим при использовании в условиях низких температур.
  • Простота и удобство монтажа.
  • Отсутствие расходов на эксплуатацию (не требует обслуживания).
  • Срок службы более 25 лет.
  • Весь используемый ассортимент термокабелей Protectowire имеет сертификат пожарной безопасности РФ, а также сертификаты FM и UL.

Электромеханическая характеристика термокабеля Protectowire.

Сопротивление* ~ 0,656 Ом/м
Емкость* ~ 98,4 пФ/м
Индуктивность* ~ 8,2 мкГн/м
Электрическая прочность изоляции = 500В (перем. напр.), 750В (пост. напр.)
Максимальное рабочее напряжение = 40В (пост. напр.)
Внешний диаметр кабеля (EPC, EPR, XLT, XCR) ~ 4мм
Внешний диаметр кабеля (TRI) ~ 4,5мм
* - Электрические характеристики указаны для витой пары проводника

Температурные режимы термокабеля PHSC

Классификая термокабеля PHSC по температурному режиму работы

Оптический термокабель Protectowire

В настоящее время остановки систем обработки данных сложных технологических процессов, вызванные перегревами и возгораниями, наносят колоссальные убытки экономике предприятий и приводят к значительной потере времени на восстановление. Для предотвращения подобных ситуаций, возникновение очагов пожара и локальных перегревов необходимо определять на ранней стадии и в кратчайшие сроки. Именно поэтому линейные тепловые извещатели компании Protectowire являются основной системой обнаружения многих промышленных предприятий.

Компания Protectowire занимает лидирующие позиции в области линейной технологии обнаружения повышений температуры. Тысячи подобных систем установлены по всему миру.

Новый продукт FiberSystem 4000 использует самые передовые технологии в области оптико-волоконного метода измерения температуры. Система включает в себя уникальные компоненты и показывает результаты недостижимые для конкурентов в данной области.

Принцип работы

FiberSystem 4000 осуществляет измерения температур посредством оптоволокна, функционирующего как линейный извещатель. Температура, регистрирующаяся на протяжении всего оптического кабеля, представляет собой непрерывный профиль значений. Это гарантирует высокую точность определения разницы температур на больших расстояниях и поверхностях в кратчайшие временные интервалы.

Принцип измерения температуры в системе FiberSystem 4000 основан на методе обратного комбинационного рассеивания. Оптический термокабель является световодным кабелем, чувствительным к теплу и световому излучению. С помощью блока формирования сигнала значения температуры в волокне термокабеля могут быть определены для конкретных точек.

Помимо излучаемого рассеивания, при тепловом воздействии в стекловолоконном материале возникает дополнительное рассеивание света (комбинационное рассеивание Рамана). Температурные изменения индуцируют колебания решетки в молекулярном комплексе кварцевого стекла. Если свет падает на эти термически возбужденные колебания молекул, то происходит взаимодействие частиц света (фотонов) и электронов молекул. В световоде возникает зависимое от температуры рассеивание света, которое по отношению к падающему свету спектрально смещено на величину резонансной частоты колебания решетки.

Обратное рассеивание содержит три различных спектральных компонента:

Рассеивание Рэлея (оптическое рассеивание света на молекулах, происходящее без изменения длины волны) с длиной волны использующегося лазерного источника;
. стоксовые компоненты с более высокой длиной волны;
. антистоксовые компоненты с более низкой длиной волны.

Интенсивность антистоксовой группы зависит от температуры, в то время как стоксовая группа почти не зависит от нее. Измерение локальной температуры в любом месте оптоволокна вычисляется из отношения интенсивности антистоксовых и стоксовых компонентов. Особенностью эффекта Рамана является прямое измерение температуры с помощью шкалы Кельвина.

С помощью полупроводникового лазера и нового метода оценки, контроллер FiberSystem 4000 способен обрабатывать эффекты рассеивания (Релея и Рамана) на протяжении 4км оптического термокабеля и достоверно указывать изменения температуры в пределах 1-2°С в минуту.

Protectowire FiberSystem 4000. Оптический термокабель серии PFS

Отличительные особенности оптических термокабелей серии PFS:

    две модели кабеля для различных условий эксплуатации;

    надежная защита от электромагнитного излучения;

    возможность работы в тяжелых эксплуатационных условиях;

    не требует обслуживания;

    огнестойкая защитная оболочка;

    программируемая температура срабатывания.

Оптический термокабель измеряет показания температуры посредством оптоволокна, функционирующего как линейный тепловой извещатель. Температура окружающей среды контролируется на всем протяжении оптического термокабеля, что гарантирует точные измерения на больших расстояниях и площадях. Оптический термокабель состоит из трубки из нержавеющей стали или полиамида с внешним диаметром 1,2-1,8мм. В трубке, заполненной специальным гелем, находятся два независимых кварцевых волокна с нанесенной цветовой маркировкой. Данная конструкция гарантирует, что волокна кабеля всегда остаются одонепроницаемыми. В зависимости от модели оптического термокабеля, трубка покрыта оплеткой из нержавеющей стали или арамидного волокна (Кевлар®). Снаружи оптический термокабель заключен в черную
огнестойкую пластичную защитную оболочку. Внешний диаметр оптического термокабеля составляет 4мм.

Оптический термокабеля Protectowire серии PFS

Применение:

Тоннели
. Кабельные трассы и лотки
. Конвейерные ленты
. Распределительные щиты
. Трансформаторные
. Градирни (охладительные башни)
. Шахты
. Трубопроводы
. Мосты, пирсы, морские суда
. Авиационные ангары

В настоящее время оптический термокабель получил широкое распространение в различных отраслях промышленности и производства. Уникальные особенности оптического термокабеля позволяют также использовать его для контроля силовых кабелей, обледенения дорожного полотна, утечек в трубопроводах и т.п.

В области обнаружения пожаров оптико-волоконная технология идеально подходит для промышленности, а также для многих типов коммерческого применения. Оптический термокабель Protectowire серии PFS обладает уникальными преимуществами перед другими типами датчиков, особенно в случаях использования в труднодоступных местах или тяжелых условиях окружающей среды. При использовании оптического термокабеля с контроллером Protectowire FiberSystem 4000 OTS производятся периодические замеры, что позволяет получить динамическую картину изменения температур.

Преимущества использования

При использовании кабеля совместно с контроллером OTS и уникальным программным обеспечением для визуализации, идентифицируется и указывается местоположение сигнала тревоги в любом месте на протяжении всей длины кабеля.
. Уникальная способность деления на зоны. Общая длина кабеля может быть разделена на 128 зон для учета различных требований (видеонаблюдение, вентиляция, пожаротушение и т.п.).

Различные условия тревоги по зонам. Сигнал тревоги может быть инициирован на основании максимальной температуры для каждой зоны, нарастания температуры на протяжении определенного времени или перепада температур между точкой измерения и средней температурой в зоне.
. Оплетка из нержавеющей стали или арамидного волокна, а также огнестойкая внешняя оболочка обеспечивают надежную защиту от механических повреждений.
. Удобство и легкость монтажа. При использовании необходимых инструментов допускается соединение участков кабеля. Соединения могут быть сделаны без потерь технических характеристик системы.

Спецификация термокабеля PFS

Серия продуктов PFS состоит из двух различных типов оптического термокабеля. Каждый из двух типов кабеля обладает уникальной структурой, позволяющей применение извещателей при различных условиях монтажа, эксплуатации и окружающей среды.

PFS-504-FR - Основание кабеля типа FR состоит из трубки из нержавеющей стали, которая содержит в себе два независимых кварцевых волокна диаметром 0,25мм с нанесенной цветовой маркировкой. Трубка заполнена водонепроницаемым, теплопроводным составом для защиты волокон от доступа влаги. Стальная трубка покрыта оплеткой из нержавеющей стали для защиты от воздействий высоких температур и усиления механической прочности кабеля. Снаружи кабель покрыт огнестойкой оболочкой из термопласта, которая не содержит в себе элементов галогенной группы и не наносит вреда экологии. Данный тип оптического термокабеля идеально подходит для использования при различных температурах окружающей среды и тяжелых условиях эксплуатации.

Структура оптического термокабеля Protectowire серии PFS

PFS-604-MF - Главной особенностью кабеля типа MF является отсутствие металла. Данный тип кабеля специально предназначен для использования в местах, подверженных воздействию электромагнитных излучений, таких как тоннели, трассы кабелей высокого напряжения и трансформаторные подстанции. В отличие от серии FR, трубка и оплетка из нержавеющей стали заменена на трубку из полиамида с оплеткой из арамидного волокна. Это способствует минимизации рисков, связанных с электромагнитными наводками. Внешняя оболочка также состоит из огнестойкого термопласта, как и вся серия продуктов PFS. Данный тип оптического термокабеля является многоцелевым и одинаково подходит для промышленного и коммерческого применения.

Монтажные принадлежности

Для монтажа и обслуживания оптического термокабеля доступен широкий диапазон принадлежностей. Они включают в себя несколько типов клипс, стяжек, уплотнительных колец, крепежных зажимов, кабельных наконечников, соединителей и зонных коробок. Надлежащее использование данных принадлежностей гарантирует надежную установку. Для монтажа и обслуживания необходимо использовать оборудование, которое одобрено или поставляется компанией Protectowire.

Контроллер серии OTS

Для получения и обработки информации от оптиковолоконного термокабеля, а также для выдачи сигналов в системы сигнализаций, FiberSystrm 4000 предусматривает в своем составе контроллер OTS.

Особенности контроллеров серии OTS.
- Уникальные способности зонирования. Единую линию кабеля можно разделить до 128 зон.
- Различные критерии инициирования тревоги каждой зоной.
- Программируемая логика управления.
- Возможность температурного контроля вдоль линии прокладки кабеля.
- При использовании дополнительного программного обеспечения доступно графическое отображение зон, индикация изменения температуры, определения размеров очага возгорания и распространение огня.
- Возможность передачи информации по интерфейсу Ethernet (TCP/IP).

Контроллер Protectowire OTS 4000

Каждый контроллер OTS имеет 4 оптически-развязанных входа и 10 программируемых выходов типа «сухой контакт» (9 тревожных выходов и 1 универсальный выход) для передачи информации о состоянии на контрольную панель управления. Опционно доступны дополнительные блоки с универсальными программируемыми выходами («сухой контакт»). Для загрузки первоначальной конфигурации предусмотренно соединение с компьютером (ПК) посредством интерфейса RS232.

Каждый контроллер может быть подключен к ПК с установленной программой визуализации, позволяющей наглядно отображать состояние зон и изменения температуры. Также для контроллеров доступен дополнительный интерфейс Ethernet (TCP/IP) для интеграции в сеть.

Конфигурация контроллера OTS

Контроллер OTS разработан для установки в стандартную 19-дюймовую стойку и является модульным комплексом, состоящим из модуля передачи сигнала, модуля приема сигнала, цифрового модуля (содержащим также интерфейсы RS232, Ethernet) и модуля источника питания (24В пост. напр. или опционально 115/230В перем.напр.).

Модуль передачи сигнала содержит в себе полупроводниковый лазер и средства его контроля, функцией которого является источник лазерного излучения.

Модуль приема сигнала содержит всю необходимую оптическую систему, включая оптический приемник. Функцией данного модуля является прием лазерного излучения, сгенерированного модулем передачи и прошедшего через оптический кабель. Модуль проводит оптические и электрические преобразования обратного рассеивания Рамана, получаемого в виде спектрального распределения, и его усиление.

Цифровой модуль управляет всеми операциями контроллера и процессом измерения температуры. На основании получаемых данных модуль вычисляет изменения температуры на всем протяжении кабеля, управляет тревогой, распределенной по зонам, и производит обмен информацией по интефейсам RS232 или через дополнителтный интерфейс Ethernet. Программное обеспечение устройства (прошивка) также сохранено в данном модуле.

Модуль источника питания осуществляет подачу рабочего напряжения на все компоненты устройства.

Технические характеристики контроллера OTS

Габаритные размеры контроллера (В х Ш х Г): 135мм х 449мм х 318мм
Вес: 10,2кг
Температура эксплуатации: 0°С... +40°С
Максимальная влажность воздуха: 95% (без конденсата)

ППК SPR 4x4 и модули PIM

Для совместной работы с термокабелем разработаны интерфейсные модули PIM-120, PIM-430D, а также приемно-контрольный прибор SPR 4x4.

Прибор приемно-контрольный SPR 4x4 имеет четыре шлейфа для подключения термокабеля. В каждый шлейф можно подключить до 1200м извещателя. Встроенный счетчик метров позволяет определить точку срабатывания с точностью до одного метра. Прибор имеет четыре выходных группы реле и гибкую логику для объединения шлейфов и выходных сигналов в зоны.

Основные характеристики:

4 безадресных шлейфа сигнализации
. 1 шлейф контроля
. 4 шлейфа управления
. Питание 220В (перем. напр.), 50Гц, потребляемая мощность 0,3кВт
. Две аккумуляторные батареи 12В, 7А*ч
. Выходные реле «Неисправность», «Пожар»
. DIP-переключатели для программирования шлейфов управления

Для подключения в безадресные шлейфы ППКУП других производителей, а также к входным модулям адресных систем пожарной сигнализации разработаны интерфейсные модули PIM-120 и PIM-430D, которые состоят из электронной платы, смонтированной в пластиковый корпус с прозрачной крышкой.

Отличительной особенностью PIM-120 является расширенный диапазон работы (возможность подключения термокабеля длиной до 2000м), малые габаритные размеры, а также низкая стоимость. На лицевой стороне платы находятся светодиоды индикации состояния «Пожар» (красный), «Неисправность» (желтый) и «Питание» (зеленый).

PIM-430D имеет два независимых шлейфа для подключения термокабеля с возможностью подключения в каждый шлейф до 2000м извещателя (при использовании двухтемпературного кабеля задействуются оба входа шлейфа прибора для одного извещателя). В своем составе PIM-430D имеет цифровой индикатор на 4 разряда, расположенный в верхней части платы, который отображает расстояние в метрах до точки стабатывания термокабеля (максимальная длина обнаружения составляет до 2000м на каждый шлейф). При подключении двух однотемпературных термокабелей (раздельно) или двухтемпературного кабеля (с общей точкой), индикация длины до места сработки извещателя осуществляется в ручном режиме с помощью трехпозиционного переключателя. В дежурном режиме индикатор обесточен и не потребляет энергии. На лицевой стороне платы PIM-430D имеется пять светодиодов для индикации состояний «Пожар» (красный) и «Неисправность» (желтый) по каждому из двух шлейфов, а также «Питание» (зеленый). Переход блока в состояние «Пожар» осуществляется при срабатывании любого подключенного линейного извещателя. При этом не происходит блокировки сигнального шлейфа - возврат устройства в дежурный режим происходит автоматически после
устранения причины, вызвавшей состояние «Пожар». Сигнал «Неисправность» формируется при обрыве цепи подключения линейного теплового извещателя.

Для своей работы, преобразователи интерфейса PIM-120 и PIM-430D требуют питания от внешнего источника 24В (пост. напр.). Все выходные сигналы устройств - «сухой контакт».

* Модули PIM рекомендуется подключать к прибору управления по классической схеме с трансляцией сигнала «Пожар» и «Неисправность» в один шлейф. Для увеличения надежности системы и повышения достоверности событий рекомендуется производить подключение нескольких модулей PIM-120 в два однопороговых шлейфа приборов управления, либо к двум входам модулей мониторинга, при использовании в адресных системах.

* Модули PIM рекомендуется подключать к прибору управления по классической схеме с трансляцией сигнала «Пожар» и «Неисправность» в один шлейф. Для увеличения надежности системы и повышения достоверности событий рекомендуется производить подключение модуля PIM-430D в два однопороговых шлейфа приборов управления, либо к двум входам модулей мониторинга, при использовании в адресных системах.

Калибровка определения точки срабатывания

После установки PIM-430D необходимо произвести его калибровку, чтобы компенсировать сопротивление кабеля, которым осуществлено подключение PIM-430D к зонной коробке (начальный участок шлейфа термокабеля). Для этого необходимо выполнить следующие процедуры:

1. Отсоединить все оборудование от выходных релейных контактов PIM-430D до подачи на него электропитания.

2. Замкнуть контакты шлейфа №1 в первой зонной коробке (при применении двухтемпературного кабеля - замкнуть контакты низкой температуры и общего кабеля)

3. На модуле PIM-430D отклонить влево и удерживать в таком положении переключатель отображения длины термокабеля. При этом на дисплее отбразится длина термокабеля. 4. Для калибровки (установки нулевой длины термокабеля) необходимо винтом потенциометра Z1 добиться положения, при котором дисплей отобразит «0». После этого снять перемычку (установленную в п.2) и произвести сброс PIM-430D перевключением. При использовании двухтемпературного кабеля «TRI-Wire» необходимо сразу перейти к п.6.
5. Данная процедура предназначена в случае использования двух шлейфов PIM-430D в части применения с двумя двухжильными термокабелями. Необходимо произвести мероприятия, описанные в п.п.2, 3, 4, применимо к шлейфу №2. При этом необходимо использовать входные контакты шлейфа №2, потенциометр Z2 и переключатель отображения длины кабеля при этом отклонять вправо.
6. Данная процедура является калибровкой встроенного счетчика. Процедура проводится заводом изготовителем и не требует настройки. Однако, это может быть необходимо в случае обнаружения некорректных показаний счетчика. Калибровка производится после установки нулевого положения, описанной в п.4. При этом необходимо замкнуть контакты линии термокабеля в месте установки оконечного сопротивления (в последней зонной коробке) шлейфа №1 (либо контакты шлейфа предтревоги при использовании двухтемпературного кабеля «TRI-Wire»). В двухтемпературном кабеле «TRI-Wire» функция предтревоги (низкой температуры срабатывания) реализована проводниками розового и черного цвета.

Для проведения калибровки необходимо отклонить влево и удерживать в таком положении переключатель отображения длины термокабеля. Винтом потенциометра «Calibrate» производить регулировку до тех пор, пока на дисплее не отобразится фактическая длина термокабеля, установленного в шлейф. Больше никаких калибровок для данного модуля
проводить не требуется.

7. Произвести аналогичные процедуры для всех используемых в системемодулей PIM-430D. После выполнения калибровок подключить все устройства к PIM-430D, отключенные в п.1 и произвести общий сброс системы.

Термокабель. Основные положения

Линейный тепловой извещатель Protectowire работает по принципу устройства с нормально-разомкнутым контактом, который замыкается при срабатывании. В связи с этим, термокабель должен использоваться только в шлейфах приборов пожарной сигнализации, которые могут обнаружить замыкание контакта и передать сигнал тревоги.

Термокабель Protectowire является контактным устройством с активным сопротивлением, распределенным по всей длине кабеля, в отличие от традиционных точечных тепловых
извещателей, изменяющих при срабатывании свое сопротивление. Сравнительно высокое сопротивление извещателя (1 Ом на каждые 1,5м витой пары) требует измерений сопротивления каждого устройства, к которому будет подключен термокабель, для определения максимально допустимой длины извещателя с целью избежания превышения установленного максимального сопротивления шлейфа пожарной сигнализации.

При использовании больших участков термокабеля, сопротивление в шлейфе может превысить допустимые значения, вследствие чего контрольная панель постоянно будет выдавать сигнал «Неисправность», или шлейф сигнализации не сможет генерировать сигнал тревоги. Данная проблема решается с помощью интерфейсных модулей PIM-120 и PIM-430D, к которым можно подключить до 2000м термокабеля (PIM-430D - до 2000м термокабеля на каждый шлейф).

Монтаж термокабеля

Термокабель Protectowire должен прокладываться отрезками без отводов и ответвлений, в соответствии с существующими нормами РФ к расположению и конфигурации линейного теплового извещателя в пространстве. Кроме требований разделения на зоны обнаружения (определение источника тревоги), длина каждого отрезка термокабеля ограничивается и контролируется устройством, к которому подсоединен извещатель.

Расположение термокабеля

В соответствии с существующими требованиями РФ, линейный тепловой извещатель Protectowire должен располагаться под перекрытием либо в непосредственном контакте с пожарной нагрузкой. Расстояние от чувствительного элемента извещателя до перекрытия должно быть не менее 25мм. При стеллажном хранении материалов термокабель допускается прокладывать по верху ярусов и стеллажей.

Термокабель прокладывают непосредственно над источником опасности так, чтобы он подвергался воздействию горячего воздуха при пожаре или под какой-либо горизонтальной
поверхностью, которая будет вызывать подобное радиальное распространение тепла, как и потолок помещения, в котором находится объект защиты.

В некоторых случаях очень важно обнаружить перегрев, при котором возможен выход из строя оборудования или возникновение пожара. Типичным примером является защита электродвигателей или роликов конвейеров, роликовые подшипники которых перегреваются и заклинивают. В подобных случаях термокабель может быть устанавлен вплотную к критической части защищаемого объекта, что обеспечивает быстрое срабатывание извещателя.

Прокладка трасс теплового линейного извещателя

Все модели линейного теплового извещателя Protectowire прошли испытания и сертифицированы в Лаборатории Underwriters Laboratories (UL, США) и ВНИИПО МЧС России. По
результатам испытаний, проводимых в соответствии с установленными органами по сертификации требованиями стандартов по испытаниям, были определены максимально допустимые расстояния между линиями прокладки термокабеля относительно максимальной зоны действия извещателя для различных применений.

Максимальное расстояние между трассами термокабелей Protectowire

При установке термокабеля очень важно иметь в виду, что внесенные в существующие нормы и требования РФ расстояния представляют собой максимально допустимые значения между участками термокабеля и должны использоваться в качестве отправной точки для проектирования расположения извещателя. В зависимости от конкретных условий применения, таких как конструкция и высота потолка, физические препятствия, наличие потоков воздуха или требования местных органов пожнадзора, максимально допустимое расстояние между трассами термокабеля может быть уменьшено.

При установке термокабеля на потолках расстояние между параллельными участками кабелей не должно превышать максимально допустимого значения, указанного существующих нормах и требованиях РФ. Таким образом, термокабель должен прокладываться на расстоянии не больше ½ установленного допустимого значения от всех стен или потолочных перекрытий (балок), выступающих не более чем на 50см, как показано на рисунке 1.


В случае, если потолочные балки выступают вниз от потолка на расстояние более 50см, рекомендуется прокладывать линию термокабеля через каждый отсек образуемый этими балками.

«Мертвая» зона

Теплый воздух поднимается от источника пожара к потолку, радиально распространяясь. По мере остывания, воздух начинает опускаться вниз. Угол, где соединяются потолок и две смежные стены, образует зону, называемую «мертвой» зоной (см. рис. 2). В большинстве случаев пожаров эта зона представляет собой треугольник со сторонами 10см вдоль потолка (измеряется от угла) и 10см вниз по стене. Не устанавливайте термокабель Protectowire в этой зоне!

"Мертвая зона" при монтаже термокабеля

Покатые потолки

В помещении с покатым потолком или с остроконечной

Дымовые линейные извещатели широко используются в системах пожарной безопасности. Они незаменимы для защиты объектов с протяженными зонами и со сложными условиями эксплуатации. К таким объектам можно отнести производственные цеха, склады, ангары, тоннели, музеи, церкви, театры, спортивные залы, и пр., где установка точечных извещателей сложна, а порой даже невозможна.

Отмечается более раннее обнаружение возгорания линейным извещателем по сравнению с точечными дымовыми извещателями в реальных условиях. В данной статье рассматриваются принцип действия линейных извещателей, варианты их конструкции, приводится оценка эффективности линейных извещателей в сравнении с точечными дымовыми извещателями.

Принцип работы и варианты конструкции линейного извещателя

На рис. 1 изображена простейшая модель дымового линейного извещателя, позволяющая понять принцип его работы. Извещатель состоит из приемника и передатчика, как правило, инфракрасного сигнала, которые размещаются на противоположных сторонах защищаемой зоны, под потолком. Инфракрасный диапазон спектра используется обычно для снижения влияния естественного и искусственного освещения, а для снижения токопотребления применяются импульсные сигналы с большой скважностью. Стабильный по уровню сигнал передатчика фиксируется приемником. В случае возникновения возгорания, дым с нагретым при тлении материалов воздухом поднимается к потолку и "растекается" по нему, постепенно увеличивая заполненную им площадь. Прохождение сигналов передатчика через задымленную среду сопровождается их затуханием. В приемнике вычисляется отношение уровня текущей величины сигнала к уровню сигнала, соответствующего оптически прозрачной среде. Как только отношение достигает установленного порога, формируется сигнал ПОЖАР, который по шлейфу транслируется на приемно-контрольный прибор (ПКП).

На сегодняшний день существует два основных варианта конструкции линейных извещателей: двухкомпонентные, состоящие из отдельных блоков приемника и передатчика, и современные однокомпонентные - один блок приемо-передатчика с пассивным рефлектором. Выше был описан принцип работы двухкомпонентного извещателя. Принцип работы однокомпонентного линейного извещателя отличается от двухкомпонентного только тем, что импульсный сигнал проходит контролируемую зону два раза: от приемопередатчика до рефлектора и обратно.

Построение линейного извещателя определяет требования к техническим характеристикам компонентов, их конструкции и размещению. Для двухкомпонентного извещателя необходимо обеспечить стабильный уровень сигнала передатчика во всем диапазоне рабочих температур и напряжений питания, т.к. снижение уровня сигнала передатчика приводит к формированию ложного сигнала ПОЖАР. Приемник должен обеспечивать хранение значения уровня опорного сигнала и корректировку порога срабатывания при запылении оптики в процессе эксплуатации.

Кроме того, для увеличения энергетического потенциала в приемнике и передатчике используются оптические системы, обеспечивающие достаточно узкие диаграммы направленности. Такое построение определяет сложность настройки и эксплуатации линейных извещателей. Для обеспечения работоспособности необходимо проведение достаточно трудоемкой юстировки, при которой устанавливается положение приемника и передатчика, соответствующее приему максимума сигнала. Изменение положения приемника или передатчика в процессе эксплуатации вызывает отклонение диаграммы направленности, снижение уровня сигнала и формирование ложного сигнала ПОЖАР, который не сбрасывается без переюстировки извещателя. После сброса производится сравнение пониженного за счет разъюстировки уровня сигнала с уровнем сигнала при чистой оптической среде и выдается подтверждение сигнала ПОЖАР. Ситуация для извещателя не отличается от подтверждения сигнала ПОЖАР при наличии дыма. Соответственно, крепление приемника и передатчика допускается только на капитальные конструкции. Форму диаграммы направленности выбирают таким образом, чтобы незначительное смещение опорных конструкций не нарушало работоспособность линейного извещателя. Обычно допускается в процессе эксплуатации смещение максимума диаграммы направленности относительно оптической оси в пределах порядка ±0,5°, что соответствует при расстоянии между приемником и передатчиком 10 метров смещению луча на ±87 мм, а при расстоянии 100 метров - на ±870 мм.

Для обеспечения работы двухкомпонентных извещателей при различных дальностях обычно требуется использование нескольких уровней сигнала передатчика и регулировка усиления приемника, что создает дополнительные трудности при настройке и юстировке. Другой существенный недостаток - необходимость подключения и передатчика, и приемника к источнику питания - это значительный расход кабеля, обычно превышающий расстояние между приемником и передатчиком. Кроме того, при установке в одном помещении параллельно нескольких линейных извещателей необходимо исключить попадание на приемник сигналов от соседних передатчиков. Некоторые производители в этом случае рекомендуют устанавливать приемники и передатчики в шахматном порядке, что приводит к дополнительному увеличению расхода кабеля и монтажных работ. Причем монтаж этой части шлейфа обычно затруднен из-за высоких потолков, или из-за необходимости выполнения скрытой проводки.

Практически все эти недостатки отсутствуют у однокомпонентных дымовых линейных извещателей (рис. 2). Пассивный рефлектор состоит из большого числа призм, структура которых обеспечивает отражение сигнала в направлении источника. Таким образом, рефлектор не требует питания и юстировки. Соответственно в несколько раз сокращается расход кабеля, трудоемкость монтажа и юстировки. Более того, рефлектор может быть установлен на некапитальные и даже вибрирующие конструкции. У современных линейных извещателей допускается изменение положения рефлектора в пределах ±10°. При больших углах появляется снижение уровня отраженного сигнала за счет уменьшения проекции рефлектора на плоскость перпендикулярную оптической оси, т.е. за счет уменьшения эквивалентной площади рефлектора.

Размещение приемника и передатчика в одном блоке обеспечивает возможность автоматического выбора диапазона измерения уровня сигнала при юстировке, автоматическую подстройку уровня излучения передатчика и коэффициента усиления приемника в зависимости от дальности контролируемой зоны.

Кроме того, дополнительно появляется возможность временной селекции сигналов, возможность использования одного рефлектора при близком расположении двух-трех извещателей, возможность компенсации изменения оптической плотности, не связанной с возникновением пожароопасной ситуации, в течение суток для исключения ложных срабатываний и т.д.

Чувствительность линейного извещателя и ее контроль

Чувствительность линейного извещателя определяется аналогично оптическому точечному, но характеризуется значением оптической плотности среды для установленной максимальной дальности, при которой извещатель срабатывает. Требования к таким извещателям определены в НПБ 82-99 «Извещатели пожарные дымовые оптико-электронные линейные. Общие технические требования. Методы испытаний». Согласно указанным НПБ, чувствительность извещателя должна находиться в пределах от 0,4 дБ (снижение интенсивности луча на 9%) до 5,2 дБ (снижение интенсивности луча на 70%). В технической документации может указываться чувствительность в дБ или в процентах. Снижению сигнала на ∆% соответствует ослабление на L дБ:

L = 10lg дБ (1)

В таблице 1 приведен пример расчета по формуле (1).

Таблица 1

%

дБ

Современные линейные извещатели имеют несколько порогов чувствительности и компенсацию запыления оптики, что позволяет учесть условия эксплуатации, исключить ложные срабатывания и снизить расходы на техническое обслуживание.

Рис.3 Компенсация запыления оптической системы

Рис.4 Адаптивный порог

Рис.5 Пример тестового аттенюатора

Рис.6 Затенение рефлектора

При достижении границы диапазона автоматической компенсации современные извещатели формируют отдельный сигнал "Обслуживание", указывающий на необходимость проведения технического обслуживания (см. рис. 3).

В наше время встречаются линейные извещатели без автокомпенсации запыления оптических систем. По мере их загрязнения будет повышаться чувствительность такого извещателя, соответственно появятся ложные срабатывания, исключение которых потребует частых чисток оптики. Увеличение объема технического обслуживания при установке таких линейных извещателей на значительной высоте может достаточно быстро скомпенсировать выигрыш на стоимости оборудования.

Линейные извещатели последнего поколения для исключения ложных срабатываний, вызванных увеличением оптической плотности в контролируемом помещении в рабочие часы, имеют так называемые адаптивные пороги (см. рис. 4). В отличии от фиксированного порога в этом случае медленные изменения оптической плотности среды в течении суток компенсируются в заданных пределах. В широко известном линейном извещателе 6500 кроме четырех фиксированных уровней чувствительности 25%, 30%, 40%, 50% затухания имеются два адаптивных уровня 30% - 50% и 40% - 50%. При установке адаптивного порога, например, 30% - 50% реально чувствительность будет поддерживаться на уровне 30% и не потребуется ее загрублять до 50% для исключения ложных срабатываний в рабочие часы.

Линейный извещатель реагирует на затухание излучения, которое можно имитировать, установив перед оптической системой передатчика или приемника фильтр (аттенюатор) с определенной величиной прозрачности. Такой фильтр обычно имеет периодическую структуру, например, в виде точек на прозрачном материале, или в виде отверстий в непрозрачном материале, диаметр которых значительно меньше размеров оптической системы приемника и передатчика (рис. 5). Отношение непрозрачной площади фильтра к общей площади определяет процент вносимого затухания.

Для контроля чувствительности двухкомпонентного линейного извещателя достаточно иметь по два фильтра на каждый уровень чувствительности. Например, для контроля порога срабатывания 30% можно использовать два фильтра с затуханием 25% и 35%. Эти фильтры являются простейшими устройствами и обычно входят в комплект высококачественных линейных извещателей западного производства. Эти оптические фильтры обеспечивают полную проверку работоспособности линейного извещателя в процессе эксплуатации. Причем можно проконтролировать отсутствие изменения чувствительности при изменении температуры или при загрязнении оптики.

Для тестирования однокомпонентного извещателя также можно использовать оптические фильтры соответствующих размеров, устанавливая их перед приемопередатчиком или перед рефлектором. Однако в однокомпонентном линейном извещателе проще вводить ослабление сигнала путем "затенения" определенной площади рефлектора (рис. 6). Для случая равномерного облучения рефлектора имеется простая зависимость затухания сигнала от величины его площади. Такой способ контроля чувствительности реализован в однокомпонентном извещателе 6500. На его рефлекторе нанесена шкала от 10% до 65% с дискретом 5%, по которой определяется величина затухания сигнала при изменении площади затенения. Таким образом, можно с высокой точностью измерить чувствительность извещателя 6500 на любом из четырех порогов 25%, 30%, 40%, 50% (1.25 дБ, 1.55 дБ, 2.22 дБ, 3.01 дБ) без использования фильтров.

Часто возникает вопрос: почему для имитации затухания сигнала на 30% необходимо закрывать более половины площади рефлектора, а для 50% - примерно 3/4 площади? Ошибки здесь нет, так как в однокомпонентном линейном извещателе, в отличии от двухкомпонентного извещателя, сигнал проходит контролируемую зону два раза: от приемопередатчика до рефлектора и обратно. Соответственно, при реальном задымлении ослабляющем сигнал на 3 дБ (на 50%), к приемо-передатчику вернется сигнал ослабленный на 6 дБ (на 75%). Простой расчет для рефлектора без шкалы, например, уровень установленной чувствительности 30%, при ослаблении сигнала на 30% до рефлектора дойдет 70% сигнала, т.е. 0,7 от первоначального уровня, и на обратном пути тоже останется 0,7 от отраженного от рефлектора, а всего вернется 0,7х0,7=0,49 или 49%, затухание составит 1-0,49=0,51, т.е. 51%. Этот эффект показывает еще одно преимущество однокомпонентного линейного извещателя: его потенциальная чувствительность в два раза выше, чем у двухкомпонентного, а реально при установлении одинаковой чувствительности выше помехозащищенность из-за увеличения в два раза порога.

Эффективность линейного дымового извещателя

Некорректное тестирование линейного дымового извещателя даже опытными инсталляторами приводит к ложным выводам о его более низкой чувствительности по сравнению с точечным оптико-электронным извещателем. Действительно, если при поступлении дыма в оптическую камеру быстро происходит активизация обычного датчика, то аналогичное "задымление" светофильтра линейного извещателя не вызывает никакой реакции. Подобное тестирование не может показать работоспособность ни линейного, ни точечного извещателя, т.к. задымление незначительного объема помещения вблизи извещателей даже отдаленно не воспроизводит физические процессы, сопровождающие реальное возгорание.

Проведем сравнение эффективности линейного извещателя с точечными дымовыми извещателями по чувствительности. Для получения возможности сравнения необходимо оценить чувствительность этих извещателей в одних единицах: чувствительность линейного извещателя определяется в абсолютных единицах затухания, а чувствительность точечного извещателя задается в удельных единицах, т.е. величина затухания на расстоянии один метр или один фут. В соответствии с НПБ 65-97 "Извещатели пожарные дымовые оптико-электронные" чувствительность точечных извещателей определяется при испытаниях в аэродинамической трубе замкнутого типа, где через извещатель проходит воздух с аэрозолью (НПБ 65-97 Приложение 1) и должна устанавливаться в пределах 0,05 - 0,2 дБ/м. Для перевода абсолютного значения затухания в удельные единицы оптической плотности среды необходимо его разделить на протяженность зоны в метрах. Соответственно, требованиям НПБ 82-99 по чувствительности линейного дымового извещателя от 0,4 дБ до 5,2 дБ при равномерном задымлении 10 метровой зоны соответствует удельная оптическая плотность в пределах от 0,04 дБ/м до 0,52 дБ/м, а при протяженности зоны 100 метров - в пределах от 0,004 дБ/м до 0,052 дБ/м.

Рис.7 Аэродинамическая труба

1 - электрическая плитка ø200мм
2 - термопара
3 - деревянные бруски

Рис.8 Очаг ТП-2

Рис.9 Очаг ТП-3


Рис.10 Размеры помещения и схема расположения

Теоретически при постоянной чувствительности эффективность линейного извещателя повышается с увеличением протяженности защищаемой зоны. Однако этот эффект проявляется только в сравнительно узких невысоких помещениях и на стадии полного задымления помещения. В реальных условиях необходимо учитывать ограничение зоны задымления на первом этапе возгорания. Нагретый воздух от очага возгорания при подъеме к потолку и распространении вдоль него охлаждается и не распространяется на всю площадь подпотолочного пространства большого помещения. Чем выше потолок, тем меньше задымленная площадь под потолком. Этот эффект определяет уменьшение защищаемой дымовыми точечными и линейными извещателями площади при увеличении высоты помещения (см. таблицы 5, 6 НПБ 88-2001*).

С другой стороны, чувствительность точечного дымового извещателя, измеренная в аэродинамической трубе, не сопоставима с чувствительностью в реальных условиях. В месте расположения извещателя скорость воздушного потока увеличивается за счет уменьшения сечения трубы и возникает турбулентность, которая отсутствует при распространении дыма вблизи потолка. Для снижения этого эффекта необходимо увеличивать сечение аэродинамической трубы, что определяет габариты и стоимость данного оборудования. На рис. 7, в качестве иллюстрации, показана установка для испытаний дымовых пожарных извещателей в компании Систем Сенсор. Этот способ тестирования при производстве извещателей позволяет контролировать стабильность чувствительности.

Для получения информации об эффективности извещателя в реальных условиях используются тестовые пожары, методика проведения которых и критерии оценки результатов приведены в европейском стандарте по дымовым извещателям точечным EN54 ч. 7 и линейным EN54 ч. 12, а также в российском ГОСТ Р50898-96 "Извещатели пожарные. Огневые испытания".

Существует шесть типов тестовых пожаров: ТП-1 - открытое горение древесины, ТП-2 - тление древесины, ТП-3 - тление хлопка, ТП-4 - горение полиуретана, ТП-5 - горение гептана и ТП-6 - горение спирта. Дымовые точечные извещатели испытываются по четырем тестовым пожарам ТП-2, ТП-3, ТП-4, ТП-5. Каждый тестовый очаг не только состоит из определенного материала, но и имеет вполне определенную конфигурацию и размеры. Очаг ТП-2 состоит из 10 высушенных буковых брусков (влажность ~5%) размерами 75 х 25 х 20 мм, расположенных на поверхности электрической плиты диаметром 220 мм, имеющей 8 концентрических пазов глубиной 2 мм и шириной 5 мм, внешний паз должен располагаться на расстоянии 4 мм от края плиты, расстояние между смежными пазами должно составлять 3 мм (см. рис. 8), мощность плиты должна быть примерно 2 кВт.Очаг ТП-3 состоит примерно из 90 хлопковых фитилей длиной 800 мм и массой примерно 3г каждый, прикрепленных к проволочному кольцу диаметром 100 мм, подвешенному на штативе (см. рис. 9). Собранные в пучок концы фитилей поджигают открытым пламенем, затем пламя задувают до появления тления, сопровождающегося свечением.

Очаг ТП-4 состоит из трех матов из пенополиуретана (без добавок, повышающих огнестойкость) плотностью 20 кг/м 3 и размерами 500 х 500 х 20 мм каждый, уложенные один на другой, которые воспламеняются при помощи 5 мл спирта в емкости диаметром 50 мм, установленной под углом нижнего мата. Очаг ТП-5 - это 650г гептана с добавлением 3% толуола в квадратном поддоне из стали размерами 330х330х50 мм.

Испытания проводятся в помещении длиной 9 - 11 метров, шириной 6 - 8 метров и высотой 3,8 - 4,2 метров, в центре которого на полу располагается тестовый очаг пожара. Тестируемые точечные извещатели располагаются на потолочном перекрытии по окружности на расстоянии 3 м от его центра в секторе 60° (см. рис. 10). Здесь же установлены измеритель оптической плотности среды m (дБ/м), радиоизотопный измеритель концентрации продуктов горения Y (относительные единицы) и измеритель температуры Т (°С). Два тестируемых линейных извещателя располагаются симметрично и их оптические оси находятся на расстоянии 2,5 метров от центра помещения.

По результатам испытаний для каждого вида тестового очага извещатели разделяются на три группы, не считая не прошедших испытание: класс А (наиболее чувствительный) с предельными значениями Т1=15°С, m1=0,5 дБ/м, Y1=1,5; класс В (средний) Т2=30°С, m2=1 дБ/м, Y2=3,0 и класс С (наименее чувствительный) Т3=60°С, m3=2,0 дБ/м, Y3=6,0. Таким образом, допускается различие в оптической плотности внутри дымовой камеры и открытом пространстве более чем в 10 раз: наименьшая чувствительность по НПБ 65-97 в дымовом канале 0,2 дБ/м, а по тестовым пожарам 2,0 дБ/м. И противоречия здесь нет: в испытательном помещении по ГОСТ Р 50898-96 размером 10±1 м х 7±1 м и высотой 4±0,2 метра сказывается аэродинамическое сопротивление дымозахода пожарного извещателя. Неудачная конструкция дымозахода и дымовой камеры пожарного извещателя, относительно низкая площадь дымозахода по сравнению с внутренним объемом извещателя могут привести к снижению чувствительности в реальных условиях более чем в 10 раз. В той или иной степени этот эффект проявляется у любого точечного дымового извещателя с дымовой камерой и с конструктивными элементами для защиты от пыли.

В линейном дымовом извещателе этот эффект полностью отсутствует, так как дым поступает в контролируемую зону без преодоления каких-либо препятствий. Таким образом, линейный извещатель с порогом 3 дБ (50%) при равномерном задымлении на протяжении даже 10 метров обеспечивает чувствительность эквивалентную удельной оптической плотности среды 0,3 дБ/м. Т. е. по классификации точечных дымовых извещателей по ГОСТ Р 50898-96 соответствует самому чувствительному классу А. При пороге 1,25 дБ (25%) соответственно получаем эквивалентную удельную оптическую плотность среды 0,125 дБ/м, что в 4 раза выше нижней границы класса А.

Кроме того, линейный дымовой извещатель обеспечивает лучшую эффективность по обнаружению различных типов пожаров, по сравнению с точечными оптико-электронными, ионизационными и тепловыми извещателями (таблица 2).

Таблица 2. Чувствительность пожарных извещателей к тестовым очагам пожара
(О - отлично обнаруживает; Х - хорошо обнаруживает; Н - не обнаруживает)

Тип тестового пожара
ТП-1 ТП-2 ТП-3 ТП-4 ТП-5 ТП-6
Характеристика Открытое горение древесины Пиролиз древесины Тление хлопка Открытое горение пластмассы Горение гептана Горение спирта
Основные сопутствующие факторы Дым, пламя, тепло Дым Дым Дым, пламя, тепло Дым, пламя, тепло Пламя, тепло
Тепловой Х Н Н Х Х Н
Дымовой оптический Н О О Х Х О
Дымовой ионизационный О Х Х О О Н
Комбинированный тепловой, дымовой оптический и дымовой ионизационный О О О О О О
Дымовой линейный Х О О О О Н

В таблице 3 приведены результаты натурных испытаний дымовых линейных извещателей 6500 на тестовые пожары c установленной чувствительностью 40% (2,22 дБ) при расстоянии между приемопередатчиком и рефлектором 5 метров.

Таблица 3. Результаты испытаний дымовых линейных извещателей

Вид ТП

№ п/п

Время активизации (мин:сек)

ТП-2 (тление древесины) 1 9:36 0.92 0.64 -
2 9:32 0.92 0.64 -

ТП-3 (тление хлопка)

1 5:02 2.69 0.42 -
2 5:02 2.71 0.43 -

ТП-4 (горение полиуретана)

1 1:04 1.92 0.56 4.35
2 1:04 1.92 0.56 4.35
ТП-5 (горение гептана) 1 1:33 2.67 0.52 16.98
2 1:29 2.54 0.45 18.06

Данные результаты подтверждают отсутствие зависимости чувствительности линейного извещателя 6500 от вида дыма. Он одинаково хорошо реагирует как на "светлые" дымы, выделяющиеся при тлении дерева и текстильных материалов, так и на "черные" дымы, выделяющиеся при горении пластика, изоляции кабеля, резинотехнических изделий, битумных материалов и т.д. Для сравнения в таблице 4 приведены результаты испытаний дымовых точечных оптико-электронных извещателей. Эти испытания проводились в разное время, вследствие чего имеются различия в скоростях нарастания оптической плотности среды, концентрации взвешенных частиц и температуры.

Таблица 4. Результаты испытаний дымовых точечных оптико-электронных извещателей

Вид ТП

№ п/п

Время активизации (мин:сек)

Параметры тестового очага при активизации

Y
ТП-2 (тление древесины) 1 7:47 0.73 0.80 -
2 6:10 0.52 0.46 -
3 7:49 0.79 0.80 -
4 6:53 0.63 0.59 -
ТП-3 (тление хлопка) 1 6:09 1.49 0.95 -
2 5:29 1.04 0.58 -
3 5:48 1.37 0,86 -
4 5:35 1.11 0.72 -
ТП-4 (горение полиуретана) 1 2:11 3.35 0.91 8.4
2 2:15 3.61 1.00 10.3
3 2:17 3.61 1.00 10.3
4 2:17 3.61 1.00 10.3
ТП-5 (горение гептана) 1 2:45 4.58 0.92 19.1
2 2:21 3.69 0.80 17.1
3 2:17 3.73 0.81 17.0
4 2:13 3.53 0.81 16.0

Таким образом, даже при сравнительно невысоких потолках (4 м) и незначительной протяженности оптического луча (5 м), линейный извещатель активизируется при меньших уровнях удельной оптической плотности среды по сравнению с точечными оптико-электронными извещателями. Причем, если для точечного извещателя условия проведения испытаний соответствуют условиям эксплуатации на большинстве объектов с незначительными отклонениями, то для линейных извещателей эти условия наиболее неблагоприятные для его работы. С увеличением протяженности защищаемой зоны при фиксированном уровне чувствительности в абсолютных единицах затухания линейный извещатель будет активизироваться соответственно при меньших значениях удельной оптической плотности. С увеличением высоты помещения преимущества еще больше усиливаются, т.к. рассеивание дыма на большой высоте влияет на линейный извещатель в меньшей степени, чем на обычный точечный.

Заключение

Современные дымовые линейные извещатели при корректной установке и настройке обеспечивают высокий уровень противопожарной защиты. Они высокоэффективны при обнаружении практически любых типов очагов пожара с различными дымами: от тления дерева и текстиля до горения пластика, резины, битума, изоляции кабеля, что обеспечивает универсальность их применения. Использование линейного извещателя однокомпонентной конструкции в сравнении с двухкомпонентным сокращает в несколько раз объем монтажных работ, расход кабеля и время юстировки.

Системы безопасности S&S "Groteck" №3 (81), 2008

Разновидностей кабельных изделий существует огромное множество. Но есть среди них особый класс, который используется как пожарный извещатель в системах пожарной и охранной сигнализации, в аппаратно-программных комплексах контроля состояния атомных электростанций. Он получил название: линейный тепловой пожарный извещатель. Чувствительный элемент у него располагается по всей длине кабеля и способен изменять свои электрические параметры от изменения внешней среды. Они настолько заметны, что их можно четко фиксировать. По сравнению с другими кабели-датчики, как их еще называют, не унифицированы, для них не установлен стандарт.

Зачастую, на просторах СНГ, применяют термин «термокабель» вместо выражения «линейный тепловой извещатель». Это связано с тем, что впервые на рынок России он поступил под таким названием.

Область применения

Проблема пожарной безопасности многих объектов затруднена из-за их сложной конфигурации, условий работы, температурных режимов и множества других факторов. Например, в условиях сильных электромагнитных полей, большой задымленности, высоком радиационном фоне большинство температурных, дымовых датчиков и извещателей пламени не могут правильно реагировать на аварийную ситуацию. Во многих случаях применение термокабелей оправдано, а в некоторых им нет альтернативы, как в случае с ядерными реакторами.

Термокабели можно применять практически везде, но особенно они эффективны в кабельных трассах, коллекторах, лифтовых шахтах, мусоропроводах, тоннелях, воздуховодах, резервуарах с горюче-смазочными материалами, трансформаторных подстанциях. Благодаря широкому температурному диапазону могут успешно применяться в морозильных камерах и холодильных хранилищах, элеваторах, складах, ангарах, пирсах и множестве других объектах.

Так как термокабель можно применять в помещениях с большими электромагнитными полями без ухудшения рабочих качеств, то возможно использовать его еще и для прямого контроля нагрева оборудования, таких как трансформаторы, генераторы, томографы.

Обратите внимание!

Из-за гибкости и малого диаметра кабеля появилась возможность контролировать температуру в труднодоступных местах установок.

В таком случае, допустимо прокладывать кабель прямо по поверхности устройств.

Принцип работы термокабеля для пожарной сигнализации

Конструктивно термокабель представляет собой витую пару, выполненную из стального провода. Каждый провод покрывается теплочувствительным полимером, а затем скручиваются вместе в витую пару.

Из-за этого в кабеле возникают напряжения, которые при нарушении изоляции приводят к короткому замыканию.

Принцип работы термокабеля для пожарной сигнализации заключается в том, что при достижении определенной температуры чувствительная к нагреву изоляция нарушается, провода под действием внутреннего напряжения соединяются, и происходит замыкание. Для срабатывания термокабеля достаточно, чтобы перегрев произошел в одном месте. Общее сопротивление линии изменяется. Специальный контроллер производит замер проводимости кабеля, вычисляет место возгорания, сравнивает с предустановками и отправляет сигнал тревоги на пульт управления противопожарной защиты.

Виды линейных датчиков

Линейные тепловые извещатели (термокабели) по реакции сенсора делятся на максимальные, которые реагируют на достижение пороговой температуры, дифференциальные, срабатывающие на определенное ее изменение и максимально-дифференциальные датчики, реагирующие на то и другое. Они бывают механические, контактные, электронные и оптические.

  • Механический

Такие датчики в качестве контролируемого параметра используют зависимость давления от температуры окружающей среды. Сенсором является медная трубка с сжатым газом. Повышение температуры вызывает изменение давления в трубке, что фиксируется датчиком. Измерительный блок преобразует показания извещателя в температуру и при превышении пороговых значений посылает сигнал тревоги на пожарную панель. Практически не используется из-за трудоемкости и появления более современных и эффективных датчиков.

  • Контактные

Сенсор такого линейного извещателя представляет собой витую пару стальных проводов покрытых термочувствительным полимером. Количество проводов может быть и больше двух. Внешняя оболочка выполняется различно в зависимости от области применения.

В зоне возгорания или нагрева изоляция кабеля плавится и происходит короткое замыкание. Интерфейсный модуль обработки вычисляет изменение сопротивления линии и сообщает расстояние до места замыкания.

  • Электронный

В отличие от контактных линейных тепловых извещателей, линейные электронные датчики до короткого замыкания дело не доводят, они фиксируют изменение сопротивления датчиков от температуры и передают на контрольно-измерительный блок. Чувствительный элемент представляет множество сенсоров встроенных в многожильный кабель, по которому и передается вся информация от каждого элемента линии. Приемный блок преобразует, полученные сигналы и сравнивает с заложенными в его память параметрами тревоги. При превышении этих пределов устройство выдает тревогу на пожарную панель.

  • Оптический

Принцип действия оптического линейного датчика основан на изменении оптической прозрачности сенсора в зависимости от изменения температуры. Для этого используется оптоволоконный кабель. Когда свет от лазера попадает на участок возгорания, часть его отражается. Устройство обработки определяет мощность прямого и отраженного света, скорость его изменения и вычисляет значение изменения температуры, и место где это произошло.

В зависимости от вида оптоволокна и установок модуля обработки, устройство может выполнять все типы функций теплового пожарного датчика.

ТОП-5 моделей термокабеля

Наиболее распространенные модели термокабелей на российском рынке:

  1. Protectowire,
  2. Thermocable,
  3. Пожтехники,
  4. Спецприбора,
  5. Этра-спецавтоматики.

Фирма Protectowire уже более 10 лет присутствует на рынке. Первые четыре производителя выпускают термокабель для пожарной сигнализации контактного типа.

Характеристики и цены примерно одинаковы, различие в сопротивлении кабеля на 1 метр, максимальной допустимой длине, напряжении постоянного тока и рабочем диапазоне. В зависимости от требований проекта удобно выбирать оптимальный вариант кабеля.

Этра-спецавтоматика выпускает линейные извещатели электронного типа. Они представляют собой кабель длиной 24 м с вмонтированными внутри оплетки температурными датчиками, некоторые модели имеют датчики наличия угарного газа. В отличие от контактных линейных датчиков работают, как всережимные тепловые извещатели.

Ошибки при монтаже и подключении

К термокабелю предъявляются такие же требования, как и к обычному точечному тепловому датчику с нормально-разомкнутыми контактами. Монтаж термокабеля пожарной сигнализации должен осуществляться собственным крепежом разработанным производителем или рекомендованным им. Это необходимо для предотвращения нарушения изоляции кабеля и соответственно ложного срабатывания системы. Если кабель состоит из нескольких кусков, то используются специальные клеммные соединители.

Кабель прокладывается под потолком или по стенам. Там где затруднена прокладка, используется трос-подвес.

Кабель прокладывается змейкой.

При прокладке нужно учитывать технологические особенности объекта. Например, на складах нужно учесть работу погрузочно-разгрузочной техники.

Монтаж кабеля необходимо осуществлять с некоторой натяжкой при температурах не ниже -10° C, но работать система будет и в диапазоне -40° C +125° C. При прокладке по ровным потолкам расстояние между кабелями, согласно международным стандартам, не должно быть больше 10,6 м для ТН68 и ТН88. Для ТН105 расстояние не должно превышать 7,5 м.

Кроме этого, имеются требования производителя. Для надежной работы все их нужно выполнять. Прикосновение кабеля к каким-то предметам будет мешать точному и правильному реагированию системы. Они могут играть роль радиатора, внося тем самым погрешность в работу.

Заключение

От правильного проектирования и монтажа системы противопожарной защиты объекта во многом зависит его сохранность и работоспособность. Роль технических средств определения и предотвращения пожара, его первичных датчиков, значительно возрастает. Требования к ним все повышаются. Появление новых детекторов, работающих на иных принципах определения возгораний, способствует раннему и точному обнаружению пожара.

В виду наращивания производства с применением дорогостоящего оборудования и увеличения численности технологического персонала на предприятиях нередко приходится заботиться о безопасности людей и технологического оборудования. В настоящее время в связи с ужесточением правил устройства систем безопасности нередко приходится задумываться о применении того или иного рода систем.

В данной статье будет рассматриваться инновационное решение в области обеспечения пожарной безопасности - устройство, представленное в виде кабеля.

Линейный пожарный извещатель, другое название термокабель - устройство способное обнаруживать изменение температуры, на участке котором он проложен, в случаях где невозможно установить другого рода пожарные извещатели.

Линейный пожарный извещатель представляет собой пару проводников изолированных между собой термочувствительной изоляцией, облочённых в дополнительный защитный изоляционный слой.

Принцип действия.

Принцип действия заключается в следующем при появлении возгорания или перегреве на участке, где применяется термокабель, происходит нарушение изоляционного слоя каждого проводника под действием пороговой температуры, при этом происходит замыкание проводников на отдельном или нескольких участках. Контрольный прибор принимает решение о изменении состояния на контрольном объекте.

Классификация термокабеля по типам применяемой внешней изоляции,

что в значительной мере влияет на применение извещателя в конкретных условиях окружающей среды:

  • Термокабель типа EPC, изоляция которого считается наиболее универсальной изоляцией выполненной из ПВХ материала, что позволяет применять её в промышленном и гражданском строительстве. Оболочка обеспечивает хорошую гибкость при прокладке кабеля при пониженных температурах. При этом обеспечивается надлежайшая огнестойкость и влагостойкость.
  • Термокабель типа EPR имеет полипропиленовую внешнюю оболочку значительно увеличивает огнестойкость и не распространяет влияния ультрафиолетового излучения окружающей среды. Как правило используется в средах с агрессивными химическими веществами, не подвержен истиранию. При этом надёжно функционирует в условиях повышенных температур окружающей среды.
  • Термокабель типа XLT, изоляция которого представляет собой изоляционный материал из полимера наивысшим образом способного противостоять экстремально низким температурам. основное предназначение такого рода изоляции применение извещателя на открытых площадках, в условия крайнего Севера, в холодильных и морозильных камерах.
  • Термокабель типа TRI имеет схожую по свойствам изоляцию типа EPC, но единственное уникальное отличие от остальных кабелей кабель TRI (TRI-Wire) способен выдавать два сигнала "Предтревога" и "Пожар", в зависимости от установки.
  • Термокабель типа XCR в буквальном смысле слова включает в себя все вышеприведённые типы оболочек. Высококачественная фторополимерная оболочка, специально разработанная для объектов специального назначения, с пониженным дымовыделением и газообразованием, механически стойкий на истирание, с высокой стойкостью к пониженным температурам. Также как и оболочка EPR стойко переносит агрессивные воздействия химически активных веществ и ультрафиолетового воздействия. А возможность использования при пониженных температурах позволяет произвести сходство с извещателем типа XLT. Качество оболочки позволяет подчеркнуть универсальность применяемого материала изоляции.

Классификацию термокабеля по условиям эксплуатации

рассмотрим на ниже следующем рисунке, что наглядно продемонстрирует способность применения той или иной изоляции в различных условиях окружающей среды.

Классификация термокабеля по температурным режимам.

На рисунке можно увидеть модель кабеля и соответствующее ей температуру срабатывания, в диапазоне рабочих температур.

Преимущество использования линейного пожарного извещателя:

Термокакабель обладает повышенной чувствительностью на температурные изменения на всей своей длине;

Наличие нескольких температурных режимов работы, обусловленных изготовлением устройств различного типа изготовления;

Устойчивость к окружающим условиям окружающей среды;

Высокая устойчивость к низким температурным режимам окружающей среды;

Низкая стоимость и простые решения по монтажу системы, сниженная стоимость эксплуатационных затрат.

Принципы построения системы:

Работа основана на принципе работы с нормально-разомкнутыми контактами, поэтому устройство контроля должны обладать особенностью контроля замыкания шлейфа связи$

Необходимо принимать во внимание то, что при выборе данного извещателя необходимо учитывать его внутренне сопротивление, обусловленное длинной термокабеля, 1 Ом на 1,5 м, что в последствии может повлиять на протяженность линии термокабеля на заданном участке;

При выборе данной системы на охраняемом участке стоит руководствоваться расчётом возможного сопротивления термокабеля и равномерно распределять общую длину на участке на несколько равномерных участков, в противном случае участок кабеля длинною более 2000 м может привести к ложному срабатыванию системы;

Монтаж необходимо производить цельным участком, не допуская разветвлений, производить разделения на зоны, которые обусловлены определение источника пожара в том или ином месте;

При планировании прокладки кабеля учитывать нормы и требования к прокладке кабеля.

Далее будут рассматриваться монтажные устройства, которые применяются в системах охранно-пожарной сигнализации с применением линейного пожарного извещателя, на основе оборудования поставляемой компанией Рrotectowire, одобренной ВНИИПО МЧС России.

Монтажные компоненты.

Монтажная зонная коробка ZB-4-QC-MP герметичного соединения линейного извещателя и шлейфа связи. Исполнение коробки позволяет обеспечить надёжную защиту соединительного узла от внешних воздействий окружающей среды, способствует обеспечению качественного соединения в широких диапазонах рабочих температур.

Пример применения рассмотренный ниже на рисунке показывает, что контактные соединители заключённые внутри коробки при таком использовании позволяют достойно обеспечивать соединение термокабеля и шлейфа связи, а также дополнительного сопротивления, обеспечивая его целостность.

Обжимная муфта SR-502

основное её назначение - обеспечениегерметизации ввода кабеля в монтажную зонную коробку ZB-4-QC-MP. Наборная муфта из стальных элементов и уплотнительных колец, позволяет получит надежное герметичное соединение с кабелем и коробкой, при этом не повреждая термочувствительную оболочку жил кабеля.

Крепёжные устройства.

Разработанные для быстрого, надёжного и в тоже время безопасного монтажа монтажные элементы позволяют постепенно в процессе протягивания закреплять кабель, при этом обеспечивая целостность термокабеля.

Представляемые ниже крепёжные элементы позволяют без дополнительного растягивания и сдавливания изоляции кабеля производить монтаж.

WAW зажим

внешний вид устройства позволяетгарантироватьпростое и надёжное крепления извещателя-кабеля к поверхностям, по которым он будет проложен. Принцип использования заключается в том что во внутрь зажима, материал которого в зависимости от условий прокладки может применятся двух типов, помещается кабель и без давления на внешнюю оболочку происходит его зажим.

По типу применяемого материала зажим может быть двух типов из нейлона (WAW-N) и из полипропилена (WAW-P). Полипропиленовые зажимы применимы при использовании в средах с высокой температурой, а нейлоновые в низкотемпературных средах до -40°C, и +88°C соответственно для полипропилена.

Особенностей монтажа на прямых участках нет, а вот в углах имеет место быть смещение точки установки крепежа внутрь изгиба кабеля на 1,3-2 см от пересечения линий кабеля, после закрепления на прямых участках.

Также для прямых участков применимы и более примитивные крепления типа OHS.

Линейные зажимы OHS

применяются для крепления линейного пожарного извещателя на прямых участках, как рекомендуется производителем, между зажимами типа WAW, при этом обеспечивая основную поддержку извещателя.

Зажим типа OHS-1 выполняется из оцинкованной стали, что обосновывает его использование для использования внутри помещения, а зажим типа OHS-1/4-SS выполнен из стали, что обосновывает его использование для использования на наружных установках.

Фиксация зажима производится по сути любым крепёжным изделием (болт, шуруп, шпилька и т.д.).

Рассмотренные монтажные крепежи позволяют производить крепление термокабеля на плоскости, но как правило при монтажных работах не всегда есть возможность произвести работы только на плоскости, или нет возможности установить на ней зажим, приходится местами подвешивать извещатель к строительным конструкция, где не получится производить крепление по тем или иным соображения, рассмотренными ранее методами, прибегают к использованию зажимов, которые без дополнительного нарушения целосности строительной позволит произвести прокладку кабеля.

Комплект зажимов серии BC

применяются для прокладки извещателя к строительным конструкциям, без нарушения её целостности, и разумного использования трудозатрат и времени монтажа. Находят применения при монтаже термокабеля на кабелегонах, организованных в лотках, по металлоконструкциям, фахферковым элементам конструкции и т.п.

Принцип крепления заключается в том что зажим типа BC закрепляется к конструкции, а уже к нему производится крепление термокабеля через зажим типа WAW.

По месту использования зажима различаются два типа зажимов.

Зажим BC-2, материал сталь, применяется для прокладки термокабеля внутри помещений.

Зажим BC-3, оцинкованная сталь, применяется для монтажа термокабеля на наружных конструкциях.

Монтажный комплект клеевого типа

в случаях где не допустимо произвести механическое крепление, а температурные условия и условия окружающей среды позволяют без особых требований к материалу используется крепёж состоящий из монтажной площадки и кабельной стяжки, который приклеивается, на специализированный, промышленный клей, что обеспечивает скорость монтажа и простоту работ.

Для обеспечения смещения термокабеля относительно точки крепления используется L-образная крепежная скоба RMC . L -образный держатель, на конце которого зажим WAW или кнопочная защёлка имеет пять отверстий для регулирования расстояния смещения. Также как и все рассмотренные ранее элементы крепежа данный держатель выполняется либо из листовой стали, либо нержавеющей стали, что обеспечивает его возможность применения как внутри, так и снаружи помещения.

Монтажные зажимы CC-2.

Представляют собой составную систему крепёжных элементов, которая позволяет быстро и удобно произвести монтаж линейного пожарного извещателя вдоль кабельного лотка с непосредственным креплением к лотку. Типовой зажим "Caddy" имеет специфический изгиб на одном из краёв, который позволяет при зацепиться за край кабельного лотка и надёжно удерживать его при навешивание на другой из его краёв термокабеля, закрепленного по средствам крепежа с защёлкой или зажима типа WAW.

Производитель для этих целей выпускает две модификации зажимов для лотка толщиной 1,6-4,0 мм и лотка толщиной 4,0-6,0 мм, модели CC-2N и CC-2W соответственно.

При использовании другого зажима типа "Caddy" имеется возможность таким же образом производить крепление к более толстым элементам кабельного лотка.

Монтажные зажимы CC-10.

Схожие по принципу работы с зажимами типа CC-2. Дополнительно ко всему ранее сказанному данный тип зажима имеет возможности дополнительного механического воздействия для крепления зажима к лотку, при использовании болтового соединения, в таком случае зажим рекомендуется для монтажа линейного пожарного извещателя в местах подверженных вибрации.

Модификации крепежа представлены двумя видами:

CC-10N применяются для лотков толщиной стенки 3,2 - 6,4 мм;

CC-10W применяются для лотков толщиной стенки 7,9 - 12,7 мм.

Менее сложный, но также функциональный способ крепления термокабеля может быть возможен при наличии таких изделий.

Монтажный зажим HPC-2.

Стойкий к УФ излучению окружающей среды и имеющий скобу, которая позволяет произвести зацеп замка крепления к материалу толщиной 1,5 - 6,4 мм, данный зажим позволит без дополнительных трудозатрат произвести монтаж линейного пожарного извещателя. Термокабель вкладывается в зажим, который крепится на соответствующую назначению конструкцию. Материал - нейлон.

Таким же простым методом крепления возможно произвести монтаж термокабеля с использованием хомутов.

Хомуты PM-3.

При прокладки линейного пожарного извещателя вдоль спринклерных систем пожаротушения, требовалось решение задачи подвеса термокабеля к трубной магистрали, для чего и были внедрены такие хотуты.

Система хомут в хомуте позволяет одним хомутом произвести крепления самого крепёжного элемента, а вторым притягивается термокабель, при этом нет контакта извещателя с трубой, а самое главное не перетягивается место обжатия кабеля, при этом не нарушается внутренний изоляционный слой жил.

Нейлоновые хомуты эксплуатируются при температурах от -40 °C и до +85 °C, при этом температура монтажа недолжна быть ниже 0 °C.

Всё вышеописанное тем или иным образом относитится к одному способу монтажа. Далее будем рассматривать способ прокладки на струне при использовании несущего троса.

Н есущий тр ос.

Эксклюзивный способ поставки линейного пожарного извещателя заключается в том что несущий трос уже интегрирован в извещатель. Нити из нержавеющей стали располагаются непосредственно под одной внешней оплёткой. Кабель обвивает нити с периодом в 0,3 м. Жилы придают кабелю дополнительную жёсткость, что позволит применять его в местах где нет возможности произвести крепления обычным способом.

Способ монтажа предельно понятный, заключается в том, что концы на прямом участке пожарного извещателя крепят к неподвижным частям или проушинам и при помощи талрепа производят натяжку.

Длинна такого участка не должна превысить 76 м, в противном случае возможен обрыв кабеля.

Также для предотвращения обрыва термокабеля на протяжении участка использования линейного пожарного извещателя устанавливают поддерживающие элементы. Частота применения таких элементов определяется условиями эксплуатации, что показывает практика при наружном использовании рекомендовано чаще применять элемент, дабы обеспечить поддержку и распределение нагрузки, от наледи, снеговую нагрузку на всю протяжённость термокабеля.

Извещатель пожарный линейный тепловой (термокабель) необходим для поиска провоцирующего перегрев источника, по всей длине цепи. T-сраб.68°С (А3), t-раб.-60…+46°С, D-внеш.4 мм, красного цвета, фторполимер

Извещатель тепловой линейный термокабель ИПЛТ 68/155 XCR:

Принцип действия термокабеля заключается в расплавлении изолирующего слоя под действием высоких температур, с дальнейшим замыкаем жил. Особенностью термокабеля является фиксирование тепловой нагрузки на любом участке цепи, что позволяет выдавать сигнал тревоги при достижении определённой температуры в любом месте кабеля, не дожидаясь его нагрева по всей длине.

Термокабель XCR серии имеет оболочку повышенной прочности из такого материала, как фторполимер. Данная оболочка выделяет значительно меньше дыма и газа, что делает извещатели серии XCR более пригодными на объектах с повышенными экологическими требованиями.

  • Температура срабатывания: +68°C;
  • Максимальная длина шлейфа: 1220 метров";
  • Диапазон рабочих температур: -40°C...+46°C;
  • Непрерывное действие термокабеля;
  • Может использоваться там, где возникают сложности с установкой классических пожарных извещателей;
  • Может использоваться на взрывоопасных объектах;
  • Имеет огнестойкую и влагостойкую оболочку;
  • Выдаёт тревожный сигнал при достижении определённой температуры

Широкий ассортимент приборов позволяет сделать выбор модели под любой запрос и функциональность. Большой выбор порадует компании занимающиеся установкой систем пожарной и охранной сигнализации и их Заказчиков.

Технические характеристики ИПЛТ 68 155 XCR

НАИМЕНОВАНИЕ ПАРАМЕТРА ЗНАЧЕНИЕ ПАРАМЕТРА
Температура срабатывания +68°C
Сопротивление витой пары 0,656 Ом/м
Ёмкость витой пары 98,4 пФ/м
Индуктивность витой пары 8,2 мкГн/м
Максимально рабочее напряжение 40 В
Максимальная длина шлейфа 1220 м
Внешний диаметр термокабеля 4 мм
Диапазон рабочих температур -40°C...+46°C
Комплектация:
  • Извещатель тепловой линейный термокабель ИПЛТ 68/155 XCR
  • Паспорт
  • Защита взрывоопасных объектов;
  • Сигнализация для офиса;
  • Пожарная сигнализация для кафе и клубов;
  • Сигнализация в магазин;
  • Пожарные системы для склада и служебных помещений;
  • Автономная пожарная сигнализация для квартиры, дома или коттеджа;
  • Пожарная сигнализация для крытых автостоянок, гаражей и парковок;
  • Комплексная пожарная защита для госучреждений (детские сады, школы, другие учебные заведения)

Особое внимание при выборе отведите на внимательное изучение технических характеристик, выбору подходящих охранных извещателей , пожарных извещателей , специальной кабельной продукции . Модели линии ИПЛТ являются одними из лучших по соотношению цена-качество и рекомендованы для использования в системах охранно-пожарной сигнализации широкого спектра.

Аналоги ИПЛТ 68 155 XCR и другие похожие по характеристикам приборы:

Купить и заказать доставку систем пожарной сигнализации в г. Москва:

Извещатель тепловой линейный (термокабель) ИПЛТ 68/155 XCR, а также другую продукцию (их аналоги, извещатели, приборы контроля) Вы можете заказать и купить в нашем интернет-магазин пожарной сигнализации или заказать доставку и услуги по профессиональному монтажу в Ваших помещениях по Москве в компании «АБарс». (Внимание, доставка осуществляется бесплатно при заказе свыше 60 тысяч рублей).

просмотров