Школьная энциклопедия. Краткий обзор теорий сверхпроводимости и проанализированы проблемы высокотемпературной сверхпроводимости Что характерно для явления сверхпроводимости

Школьная энциклопедия. Краткий обзор теорий сверхпроводимости и проанализированы проблемы высокотемпературной сверхпроводимости Что характерно для явления сверхпроводимости

Для этого, пожалуй, придется вспомнить несколько дат и начать с 1911 года, когда голландский физик Камерлинг-Онкес в Лейденской лаборатории открыл новое явление сверхпроводимости. Затем ему же первому удалось получить сверхнизкую температуру и при минус 269 градусах превратить гелий в жидкость. Наконец появилась возможность охлаждать вещества в жидком гелии и изучать их свойства в совершенно новой, ставшей теперь доступной области температур.

В то время многие считали (этого же мнения придерживался и Оннес), что с приближением к -273 градусам электрическое сопротивление любого должно падать до нуля. Как заманчиво было, наконец, проверить это! Но подтверждение не получалось. Может быть, виноваты примеси? Подходящим металлом, который можно было исследовать в очень чистом состоянии, Оннесу показалась ртуть. И действительно - как и предсказывала электронная теория металлов - с понижением температуры сопротивление ртути закономерно уменьшалось. Все шло нормально до четырех градусов, как вдруг сопротивление полностью исчезло. Исчезло внезапно, сразу - скачком.

Впрочем, Омнес отнесся к этому довольно спокойно. Он принял это за подтверждение своей теории электрического сопротивления и назвал найденное им новое состояние ртути «сверхпроводящим». Но скоро выяснилось, что парадоксальный скачок сопротивления до нуля невозможно объяснить ни одной теорией и что открыл-то Оннес совсем не то, на что рассчитывал.

Что могло измениться в металле, почему при некоторой температуре (Оннес назвал ее критической) электронам уже ничто не мешает двигаться, почему они перестают взаимодействовать с атомами кристаллической решетки, или, как говорят физики, перестают рассеиваться на колебаниях решетки?

А может быть, сопротивление у вещества все же остается, просто становится таким маленьким, что его не удастся даже измерить? И сам Оннес, и многие экспериментаторы пытались «поймать» это остаточное сопротивление. Они использовали самые чувствительные методы, чтобы по затуханию электрического тока в сверхпроводящем кольце оценить величину сопротивления. Опыты эти продолжались до самого последнего времени и завершились знаменитым экспериментом Коллинза, где сверхпроводящее свинцовое кольцо с электрическим током сохранялось в жидком гелии около трех лет.

Самые чувствительные методы не обнаружили уменьшения тока. Значит, не просто хорошая электропроводимость, а сверхпроводимость. Продолжать эксперимент не было надобности: он показал, что «сопротивление» сверхпроводника, по крайней мере, в биллион раз меньше, чем у самой чистой меди.

Прошло 22 года, прежде чем было сделано второе, не менее поразительное открытие. Оказалось: сверхпроводимость - это не только «идеальная проводимость», но и «идеальный диамагнетизм». Напомним, что диамагнетики - это вещества, находящиеся «не в ладах» с магнитным полем. Помещенные в магнитное поле, они стремятся вытеснить его из себя и занять в пространстве такое положение, где напряженность поля минимальна. Как идеальный диамагнетик сверхпроводник не терпит внутри себя ни малейшего магнитного поля. Так, еще в 1933 году стало ясно, что нулевое сопротивление и нулевое магнитное поле - это два свойства сверхпроводящего состояния.

Постепенно во всех крупнейших центрах Европы и Америки начали разворачиваться работы по сверхпроводимости. В крупнейших - потому что только самым мощным научным учреждениям было «по карману» содержать дорогостоящее холодильное хозяйство и установки ожижения гелия.

Но ни высокая стоимость, ни дефицит жидкого гелия не помешали физикам за эти годы накопить большой фактический материал - открыть сотни новых сверхпроводников и обнаружить целый ряд совершенно неожиданных эффектов. Мы уже знаем около тысячи сверхпроводящих веществ - элементов, соединений, сплавов. Среди них - свыше двадцати элементов периодической системы Менделеева, вплоть до технеция, металла, который не существует на Земле в естественных условиях (его получают искусственно в атомных реакторах). Выяснилось, что сверхпроводимостью обладают сплавы металлов и неорганические соединения, состоящие из сверхпроводящих элементов и - что самое удивительное - не содержащие их. Долгое время первенство по самой высокой критической температуре держал нитрид ниобия (-259 градусов), потом была обнаружена сверхпроводимость при -256 градусах у силицида ванадия, а в 1954 году была зафиксирована рекордно высокая критическая температура: -254,8 градуса у станнида ниобия (сплава ниобия с оловом).

По некоторым свойствам, главным образом магнитным, сверхпроводящие вещества стали разделять на сверхпроводники первого и второго рода. Все вещества с высокими критическими температурами оказались сверхпроводниками второго рода. У них обнаружились и другие важные свойства: высокие значения критического магнитного поля и критической плотности тока. Что это значит? Было известно: сверхпроводимость можно «разрушить», не только повышая температуру выше критической, но и действуя магнитным полем. Так вот, образцы этих соединений оставались сверхпроводящими, даже если через них в сверхсильном магнитном поле пропускали токи плотностью до миллиона ампер на квадратный сантиметр сечения.

В те же самые годы сверхпроводимость усиленно атаковали с другой стороны. Здесь не жаловались на нехватку гелия, на сложность и дороговизну оборудования. Перед теоретиками стояли другие трудности - математические. Кто только не брался за решение загадки сверхпроводимости. Только к 1957 году барьеры были, наконец, преодолены.

Открытие сверхпроводимости

Итак, общая теория сверхпроводимости появилась. Основная ее идея такова. Частицы одного знака должны - по закону Кулона - отталкиваться друг от друга. Этот закон, конечно, соблюдается и в сверхпроводниках. Но кроме такого взаимодействия, оказывается, в металле может быть и другое - слабое притяжение, возникающее между электронами через промежуточную среду. Эта среда - сама решетка металла, или, говоря точнее, ее колебания. И вот, если появляются условия, когда это притяжение становится больше сил отталкивания, наступает сверхпроводимость.

Сейчас уже никто не сомневается, что теория, в основном, правильно объясняет природу сверхпроводимости. Но значит ли это, что решены все проблемы? Спросите у теоретиков: «Почему у олова критическая температура равна 3,7 градуса, а у ниобия 9,2?». Увы перед такими важными вопросами теория пока пасует…

Обычный путь в физике: явление открыли - объяснили - научились использовать. Чаще всего развитие теории и разработка способов применения идут параллельно. Разумеется, в такой непривычной, далекой от повседневного быта области, как сверхпроводимость, слово «применение» надо понимать несколько иначе, чем обычно — это не тракторы и не стиральные машины. Применять - значит использовать уникальные эффекты, заставить их «работать». Пусть сначала только в лаборатории, пусть без шумных успехов и сенсаций.

А что, если попробовать изготовить сверхпроводящий магнит? - такой вопрос возник еще в двадцатые годы прошлого века. Известно ведь, наиболее сильные магнитные поля создают с помощью электромагнитов. Поля напряженностью до 20 тысяч эрстед удается получать таким методом довольно успешно, на сравнительно недорогих установках. А если нужны более сильные поля - сто и более тысяч эрстед? Мощность магнитов возрастает до миллионов ватт. Питать их нужно через специальные подстанции, а водяное охлаждение магнита требует расхода тысяч литров воды в минуту.

Магнитное поле - электрический ток - сопротивление связаны в единую цепочку. Как заманчиво было бы вместо этих громоздких, сложных и дорогих устройств изготовить миниатюрную катушку из сверхпроводящей проволоки, поместить в жидкий гелий и, питая ее от простого аккумулятора, получать сверхсильные магнитные поля. Реализовать эту идею удалось значительно позже - только тогда, когда были открыты новые материалы с высокими критическими полями и токами: сначала ниобий, потом сплав ниобия с цирконием, титайом. И, наконец, ниобий - олово. Во многих лабораториях мира уже «трудятся» портативные сверхпроводящие магниты, дающие поля около 100 тысяч эрстед. И несмотря на дороговизну жидкого гелия, такие магниты значительно выгоднее обычных.

Применение сверхпроводимости

Сильные магнитные поля - это всего лишь одна из множества областей возможных и отчасти осуществленных использования сверхпроводимости. Точнейшие приборы физического эксперимента - сверхпроводящие гальванометры и детекторы излучений, резонаторы со сверхпроводящим покрытием для микроволновой техники и для линейных ускорителей тяжелых частиц, магнитные линзы для электронных , электродвигатели на сверхпроводящих подшипниках без трения, трансформаторы и линии передач без потерь, магнитные экраны, аккумуляторы энергии, наконец, миниатюрные и быстродействующие «ячейки памяти» вычислительных машин - вот сильно сокращенный перечень проблем сегодняшней прикладной сверхпроводимости.

Уже говорят о том, что всю классическую электротехнику можно «изобрести» заново, если строить ее не на обычных проводниках электрического тока, а на сверхпроводящих материалах.

Ну, а если немножко помечтать? Ведь в космосе идеальные условия для работы сверхпроводящих устройств, идеальные условия сверхпроводимости. В вакууме космического пространства тело может нагреваться извне только за счет излучения (Солнца, например). Раз так, то достаточно любого непрозрачного экрана, и любой предмет в космосе полностью теплоизолирован. И раз сами элементы нашей воображаемой машины сверхпроводящие и ток течет по ним без сопротивления, тепло в них не выделяется. Жидкий гелий почти не будет, а значит, устройство сможет работать неограниченно долго. Вспомните опыт Коллинза, чья свинцовая баранка сохраняла ток почти три года.

Представляете, где-нибудь на орбите вокруг Луны вращается эдакая криогенная вычислительная машина, одна обслуживающая целые отрасли земного хозяйства, науки и транспорта? А сверхпроводящие магниты,- может быть, именно они будут удерживать плазму в термоядерных реакторах будущего? Или охлажденные электрические кабели, по которым абсолютно без всяких потерь можно передавать электрическую энергию за десятки тысяч километров?

Фантазия ли это? Все, о чем здесь говорилось, принципиально возможно. Значит, будет сделано. Но когда?

Это прекрасная область, как для фантазии, так и для глубокой теоретической и экспериментальной работы.

А пока сплав ниобий-олово остается единственным веществом с максимальной критической температурой минус 254,8 градуса, причем никто не может понять, за какие достоинства выделила его природа из тысяч других неорганических веществ. Никакие добавки других элементов, никакие изменения внутренней структуры этого сплава не смогли повысить его критической температуры. Поиски других, аналогичных, двойных и тройных сплавов тоже оказались безуспешными - ни разу никому не удалось подняться выше этого заколдованного числа - минус 254,8 градуса. Стали поговаривать о том, что, видимо, эта температура не случайна, вероятно, это предел, который не удастся перейти. Остается лишь найти этому факту теоретическое обоснование, разыскать причину, почему в металлических системах не может быть сверхпроводимости при более высоких температурах.

Чудо сверхпроводимости (авт. Валерий Старощук)

Немного теории

Уже первые опыты с электричеством показали, что серебро, медь и алюминий хорошо проводят электрический ток, а фарфор, стекло, резина и шелк его практически не проводят. Соответственно, из первых материалов люди стали делать проводники, а из вторых - изоляцию для проводов и защиту от поражения электрическим током. На фото вы видите современный сетевой двужильный провод. Каждая жила состоит из семи медных проволочек заключенных в пластиковую изоляцию. Учитывая, что провод работает при опасном напряжении 220В, две изолированные жилы покрыты еще одним общим слоем пластиковой изоляции.

Когда по проводнику проходит электрический ток, он разогревается. Это свойство используют в нагревательных приборах, таких как утюг, чайник, в электробатареях, а также в лампах накаливания. На фото вы видите вольфрамовую нить, которая так разогрелась под действием тока, что начала излучать свет.

Сейчас все чаще применяют энергосберегающие люминесцентные лампы, но и в них есть маленькая нить накала для излучения электронов.

Если по проводнику идет ток, он не только нагревается, но и создает вокруг себя магнитное поле. Это свойство первым заметил и описал в 1820 году датский ученый Ганс Христиан Эрстед. На фото вы видите, как под действием магнитного поля железные опилки выстраиваются вокруг медного проводника с током.

Магнитное поле тока используют в работе электродвигателя, генератора и электромагнита.

Итак, если по проводнику идет ток, то энергия источника тока превращается в тепловую и энергию электромагнитного поля. Иногда это нужно и полезно, а иногда просто вредно. Например, зачем нам нагревание и магнитное поле провода, которым мы подключили утюг к розетке? Греются также провода, по которым электрический ток от электростанции идет к нашим домам. Чтобы уменьшить эти потери энергии, сопротивление проводника стараются сделать как можно меньше.

Так как электрическое сопротивление образца сильно зависит от материала, из которого он сделан, температуры и геометрических размеров, решили измерять удельное сопротивление , то есть сопротивление образца из данного материала длиной 1м, площадью поперечного сечения 1мм 2 при 20 0 С. Например, удельное сопротивление меди равно r = 0,0125 Ом·мм 2 /м. Это значит, что если вы возьмете проводник из меди (Cu) длинной 1 м и площадью сечения 1мм 2 , то его сопротивление электрическому току будет 0,0125 Ом. Сопротивление дает возможность узнать, какой ток пройдет по проводнику для данного напряжения. Например, если напряжение на концах нашего образца будет равно 0,1В, то через него пойдет ток I = U/R= 0,1/0,0125 = 8A. Для наглядности представим электроны в виде бегущих синих человечков.

Тогда при токе 8А за одну секунду их забежит в проводник 5·10 19 (50 миллиард миллиардов!). Это почти в 70 миллиардов раз больше, чем людей на планете Земля. Обратите внимание, что выбежит из проводника их за секунду столько же. Договорились, что направление тока определяют по движению положительно заряженных частиц. Но в металлах ток проводят отрицательные электроны, поэтому направление тока показано противоположно скорости электронов. В проводнике находятся положительные ионы меди, с которыми наши электроны-человечки играются, хватая руками. Ведь между отрицательными электронами и положительными ионами существуют силы притяжения. Забрать ион с собой человечку-электрону не удастся, так как ионы намного тяжелее электронов и крепко связаны силами между собой в кристаллической решетке. А вот раскачать ионы нашим «человечкам» будет под силу. При этом электроны теряют свою скорость, а значит и энергию движения, а проводник соответственно нагревается.

История открытия


Голландский ученый Хейке Камерлинг Оннес (Heike Kammerlingh Onnes) (на фото справа) решил первым в мире достичь в своих экспериментах абсолютный ноль по шкале Кельвина (примерно минус 273 градуса по Цельсию). Как вы знаете, в природе не существует температуры ниже. Сорокалетний ученый, используя свои связи с голландскими промышленниками в 1893 году начинает строительство в Лейденском университете одной из лучших лабораторий в мире, которую оснастил самым современным оборудованием. Первый успех пришел 10 июля 1908 года, когда удалось получить жидкий гелий при 5К (это минус 268 градусов Цельсия!). Через 2 года напряженного труда они получают температуру 1К! И тут ученый понимает, что это предел, который можно достичь на данном оборудовании, поэтому принимается решение изменить направление научной работы. Теперь все силы были направлены на изучение физических свойств разных материалов при низких температурах. Естественно, один из пунктов программы включал измерение удельного электрического сопротивления материала. Многие ученые того времени высказывали предположение, что при очень низких температурах металлы должны стать диэлектриками. Якобы свободные электроны настолько замедлят свое движение, что «приклеятся» к ионам и не смогут переносить электричество. Но физика - наука, прежде всего экспериментальная! Опыты Хейке Камерлинг Оннеса показали, что у платины с понижением температуры сопротивление не растет, а падает, и после 4К остается постоянным. Ученый сделал предположение, что сопротивление должно стремиться к нулю, потому что ионы прекращают колебательное движение и «не мешают» двигаться свободным электронам. Понимая, что в платине есть малые примеси, он решил проверить ртуть, самый очищенный металл, который у него был.

8 апреля 1911 года группа Хейке Камерлинг Оннес, с ассистентами Корнелисом Дорсманом (Cornelis Dorsman) и Гиллесом Хольстом (Gilles Holst) проверяли работу нового криостастата (устройство для поддержания низких температур в данном объеме). Сначала думали только заправить жидким гелием, но потом установили газовый термометр и два образца из золота и ртути, чтобы измерить их удельное сопротивление. Измерив сопротивление металлов при 4,3К, решили уменьшить давление в криостате над гелием. Гелий начал быстро испаряться, и температура упала до 3К. Эксперимент длился уже 9 часов! При повторном измерении сопротивление ртути оказалось равным нулю! Так была открыта сверхпроводимость!

На фото вы видите историческую запись ученого, сделанную в тот день. В рамку взята голландская фраза Kwik nagenoeg nul — «Сопротивление ртути практически нулевое» (3 К). Следующее предложение Herhaald met goud означает «Повторено с золотом».

Критическая температура перехода ртути в сверхпроводящее состояние в тот день не была определена, да такой задачи и не ставилось. Ее выяснили в следующем эксперименте, проведенном 11 мая. Камерлинг-Оннес тогда пришел к выводу, что ртуть делается сверхпроводником при охлаждении до 4,2 К.

В дальнейшем открытия пошли одно за другим. В 1912 году открыли еще два сверхпроводника - свинец и олово. В 1914 понимают, что сильное магнитное поле разрушает сверхпроводимость. В том же году проводят эффектный эксперимент со сверхпроводящим кольцом из свинца. В нем кратковременно индуцировали ток, а потом наблюдали его циркуляцию на протяжении нескольких часов без малейшего затухания. Само кольцо становится магнитом.

В 1919 году из Лейдена пришла весть, что сверхпроводниками становятся также таллий и уран.

Объяснение сверхпроводимости

Объяснить явление сверхпроводимости с точки зрения классической электродинамики невозможно. Только с развитием квантовой физики в 1957 году (спустя 46 лет после открытия!) три американских физика - Бардин, Купер и Шриффер, объяснили сверхпроводимость спариванием электронов, то есть образованием куперовских пар, которое осуществляется за счет обмена колебаниями кристаллической ячейки - фононами.

Чтобы понять, как образуются куперовские пары, рассмотрим очень упрощенную модель прохождения тока в сверхпроводнике.

Красными кружками обозначены положительные ионы кристаллической решетки.

Когда электрон А под действием электрического поля движется в пространстве решетки, он немного искривляет её. В результате концентрация положительных ионов за ним возрастает. Скопление положительных ионов притягивает отрицательный электрон В с силой F. В результате энергия, которую потратил электрон А на прохождение ионной кристаллической решетки, передается через колебания решетки электрону В. Получается, что электроны А и В связаны между собой через ионную решетку, образуют пару и вместе не тратят энергии при движении. Сопротивление току в этом случае равно нулю.

Применение сверхпроводников

Современная наука уже получила материалы, которые обладают сверхпроводимостью при 165К (минус 107 0 С). Если будут получены материалы обладающие сверхпроводимостью при комнатной температуре, это будет огромный скачок в развитии человечества. Ведь одну треть электроэнергии мы тратим во время её передачи от источника потребителю. Пока же сверхпроводники приходится охлаждать жидким азотом.

С другой стороны, без них уже трудно представить работу Большого адронного коллайдера в ЦЕРНе, и строительство термоядерного реактора ITER в Кадараше.

Сверхпроводимость характеризуется также эффектом Мейснера , заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. В результате образец, как видно на фото, зависает над магнитом.

На основе этого явления уже созданы поезда на магнитной подушке, которые могут разгоняться до скорости 500 км/ч.

Мощные магниты на сверхпроводниках используют в медицине при создании томографов, использующем принцип ядерно-магнитного резонанса (ЯМР). Сканирование тканей человека позволяет врачам увидеть на экране компьютера срез внутренностей, не оперируя больного. Такой метод позволяет быстро поставить правильный диагноз, а значит быстрее вылечить пациента.

Современная квантовая теория сверхпроводимости принципиально не ограничивает значение температуры, при которой наблюдается этот эффект. Значит дело за созданием новых материалов и соединений, которые, возможно, в скором будущем откроете вы.

Сверхпроводимость - явление, состоящее в том, что у некоторых металлов и сплавов происходит резкое падение до нуля удельного сопротивления вблизи определенной температуры. Эти металлы и сплавы называются сверхпроводниками.

2. Какую температуру называют критической?

Критическая температура - температура, при которой проводники переходят в сверхпроводящее состояние.

3. Какой эффект называют изотопическим? Почему изотопический эффект является ключом к объяснению сверхпроводимости?

Изотопический эффект заключается в том, что квадрат температуры обратно пропорционален массе ионов в кристаллической решетке. Это значит, что при критической температуре структура кристаллической решетки сверхпроводника оказывает большое влияние на движение электронов - возникающие силы притяжения между электронами превышают кулоновские силы отталкивания.

4. Чем отличается характер движения электронов в сверхпроводнике от их движения в проводнике? Как механически можно промоделировать движение куперовских пар в сверхпроводнике?

В проводнике электроны движутся независимо друг от друга, а в сверхпроводнике (при критической температуре) их движения взаимосвязаны. Если движение электронов в проводнике мы сравнивали с потоком шариков, скатывающимся по наклонной плоскости и натыкающимся на штыри, то движение электронов в сверхпроводнике можно представить как движение наклонной плоскости, но шариков попарно связанных пружинами.

5. Почему сверхпроводимость исчезает при температуре выше критической? Чем объясняется перспективность разработок высокотемпературных сверхпроводников?

При температурах больше критической электроны снова начинают двигаться хаотично, куперовские пары разрушаются. Перспективность разработок высокотемпературных сверхпроводников позволит уменьшить потери энергии при передаче на большие расстояния, увеличить быстродействие компьютеров.

Сверхпроводимость

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов, сплавов и керамик , переходящих в сверхпроводящее состояние. Сверхпроводимость - квантовое явление . Оно характеризуется также эффектом Мейснера , заключающимся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес . Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий . Позднее ему удалось довести его температуру до 1 Кельвина . Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов , в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 Кельвинах (около −270 °C) электрическое сопротивление практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

Нулевое сопротивление - не единственная отличительная черта сверхпроводников. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера , открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году .

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока . Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb 3 Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл , пропускать ток плотностью до 100 кА/см².

Свойства сверхпроводников

Нулевое электрическое сопротивление

Сверхпроводники в высокочастотном поле

Строго говоря, утверждение о том, что сопротивление сверхпроводников равно нулю справедливо только для постоянного электрического тока . В переменном электрическом поле сопротивление сверхпроводника отлично от нуля и растёт с увеличением частоты поля. Этот эффект на языке двухжидкостной модели сверхпроводника объясняется наличием наравне со сверхпроводящей фракцией электронов также и обычных электронов, число которых, однако, невелико. При помещении сверхпроводника в постоянное поле, это поле внутри сверхпроводника обращается в нуль, поскольку иначе сверхпроводящие электроны ускорялись бы до бесконечности, что невозможно. Однако в случае переменного поля поле внутри сверхпроводника отлично от нуля и ускоряет в том числе и нормальные электроны, с которыми связаны и конечное электрическое сопротивление, и джоулевы тепловые потери. Данный эффект особо ярко выражен для таких частот света, для которых энергии кванта достаточно для перевода сверхпроводящего электрона в группу нормальных электронов. Эта частота обычно лежит в инфракрасной области (около 10 11 Гц), поэтому в видимом диапазоне сверхпроводники практически ничем не отличаются от обычных металлов .

Фазовый переход в сверхпроводящее состояние

Характер изменения теплоемкости (c v , синий график) и удельного сопротивления (ρ, зеленый), при фазовом переходе в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Т с - температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода . Ширина интервала перехода зависит от неоднородности металла, в первую очередь - от наличия примесей и внутренних напряжений. Известные ныне температуры Т с изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb 3 Ge, в плёнке) и 39 К у диборида магния ( 2) у низкотемпературных сверхпроводников (Т с ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников. В настоящее время фаза HgBa 2 Ca 2 Cu 3 O 8+d (Hg−1223) имеет наибольшее известное значение критической температуры - 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К).

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Т c теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость , что характерно для фазового перехода ΙΙ рода . Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.

Эффект Мейснера

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера , заключающийся в выталкивании сверхпроводником магнитного потока . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его.

Изотопический эффект

Изотопический эффект у сверхпроводников заключается в том, что температуры Т с обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего элемента .

Момент Лондона

Вращающийся сверхпроводник генерирует магнитное поле , точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B », где измерялись магнитные поля четырёх сверхпроводящих гироскопов , чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы , использование момента Лондона было одним из немногих способов определить их ось вращения .

Теоретическое объяснение эффекта сверхпроводимости

Уже на относительно ранней стадии изучения сверхпроводимости, во всяком случае после создания теории Гинзбурга - Ландау , стало очевидно, что сверхпроводимость является следствием объединения макроскопического числа электронов проводимости в единое квантово-механическое состояние. Особенностью связанных в такой ансамбль электронов является то, что они не могут обмениваться энергией с решёткой малыми порциями, меньшими, чем их энергия связи в ансамбле. Это означает, что при движении электронов в кристаллической решётке не изменяется энергия электронов, и вещество ведёт себя как сверхпроводник с нулевым сопротивлением. Квантово-механическое рассмотрение показывает, что при этом не происходит рассеяния электронных волн на тепловых колебаниях решётки или примесях. А это и означает отсутствие электрического сопротивления. Такое объединение частиц невозможно в ансамбле фермионов. Оно характерно для ансамбля тождественных бозонов. То, что электроны в сверхпроводниках объединены в бозонные пары, следует из экспериментов по измерению величины кванта магнитного потока, который «замораживается» в полых сверхпроводящих цилиндрах. Поэтому уже в середине прошлого века основной задачей создания теории сверхпроводимости стала разработка механизма спаривания электронов. Первой теорией, претендующей на микроскопическое объяснение причин возникновения сверхпроводимости, была теория Бардина - Купера - Шриффера , созданная ими в 50-е годы прошлого столетия. Эта теория получила под именем БКШ всеобщее признание и была удостоена в 1972 году Нобелевской премии . При создании своей теории авторы опирались на изотопический эффект, то есть влияние массы изотопа на критическую температуру сверхпроводника. Считалось, что его существование прямо указывает на формирование сверхпроводящего состояния за счет работы фононного механизма.

Теория БКШ оставила без ответа некоторые вопросы. На её основе оказалось невозможно решить главную задачу - объяснить, почему конкретные сверхпроводники имеют ту или иную критическую температуру. К тому же дальнейшие эксперименты с изотопическими замещениями показали, что из-за ангармоничности нулевых колебаний ионов в металлах существует прямое воздействие массы иона на межионные расстояния в решетке, а значит и прямо на значение энергии Ферми металла. Поэтому стало понятно, что существование изотопического эффекта не является доказательством фононного механизма, как единственно возможного ответственного за спаривание электронов и возникновение сверхпроводимости. Неудовлетворенность теорией БКШ в более поздние годы привела к попыткам создать другие модели, например, модель спиновых флуктуаций и биполяронную модель. Однако, хотя в них рассматривались различные механизмы объединения электронов в пары, к прогрессу в понимании явления сверхпроводимости эти разработки тоже не привели.

Сравнение вычисленных значений критических температур сверхпроводников с данными измерений.

Согласно одной из последних теорий, предложенной Б. В. Васильевым, спаривание электронов является необходимым, но недостаточным условием для существования сверхпроводящего состояния. Более того, какой конкретно механизм приводит к такому спариванию - не так уж важно. Важно, чтобы такой механизм существовал и был работоспособным во всем диапазоне температуры, где существует сверхпроводящее состояние.

Причина этого объясняется следующим образом: объединившись в пары, электроны создают бозоны, не объединенные в единый тождественный ансамбль. Их различают некоррелированные нулевые колебания. Для перехода бозонов в тождественное состояние необходимо упорядочить их нулевые колебания. По этой причине параметры, характеризующие механизм упорядочения нулевых колебаний в электронном газе, оказываются определяющими для свойств сверхпроводников.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости . На базе металлокерамики, например, состава YBa 2 Cu 3 O x , получены вещества, для которых температура Т c перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля H c 2 . В технике применяются, в основном, следующие сверхпроводники:

См. также

  • Сверхпроводимость и нулевые колебания

Примечания

  1. Dirk van Delft and Peter Kes The discovery of superconductivity (англ.) // Physics Today . - 2010. - Vol. 63. - С. 38-43.
  2. Алексей Левин Сверхпроводимость отмечает столетний юбилей . Элементы.ру (8 апреля 2011). Архивировано из первоисточника 23 августа 2011. Проверено 8 апреля 2011.
  3. В. Л. Гинзбург , Е. А. Андрюшин Глава 1. Открытие сверхпроводимости // Сверхпроводимость . - 2-е издание, переработанное и дополненное. - Альфа-М, 2006. - 112 с. - 3000 экз. - ISBN 5-98281-088-6

Введение

Глава 1 Открытие явления сверхпроводимости

1.2 Сверхпроводящие вещества

1.3 Эффект Мейснера

1.4 Изотопический эффект

Глава 2 Теория сверхпроводимости

2.1 Теория БКШ

2.4 Образование электронных пар

2.5 Эффективное взаимодействие между электронами, обусловленное фононами

2.6 Каноническое преобразование Боголюбова

2.7 Промежуточное состояние

2.8 Сверхпроводники второго рода

2.9 Термодинамика сверхпроводимости

2.10 Туннельный контакт и эффект Джозефсона

2.11 Квантование магнитного потока (макроскопический эффект)

2.12 Найтовский сдвиг

2.13 Высокотемпературная сверхпроводимость

Глава 3. Применение сверхпроводимости в науке и технике

3.1 Сверхпроводящие магниты

3.2 Сверхпроводящая электроника

3.3 Сверхпроводимость и энергетика

3.4 Магнитные подвесы и подшипники

Заключение

Библиография

Введение

У большинства металлов и сплавов при температуре порядка несколько градусов по Кельвину сопротивление скачком обращается в нуль. Впервые это явление, названное сверхпроводимостью, было обнаружено в 1911 г. Камерлинг - Оннесом. Вещества, обладающими таким явлением назвали сверхпроводниками. В 1957 году Дж. Бардин, Л. Купер, Дж. Шриффер разработали микроскопическую теорию сверхпроводимости, позволившую принципиально понять это явление. Теория БКШ объяснила основные факты в области сверхпроводимости (отсутствие сопротивления, зависимость Т к от массы изотопа, бесконечную проводимость (Е = 0), эффект Мейснера (В = 0), экспоненциальную зависимость электронной теплоёмкости вблизи Т = 0 и др.). Ряд выводов теории показывает хорошее количественное согласие с опытом. Многие вопросы нуждаются ещё в разработке (распределение сверхпроводящих металлов в системе Менделеева, зависимость Т к от состава и структуры сверхпроводящих соединений, возможность получения сверхпроводников с максимально высокой температурой перехода и др.). Успехи экспериментального и теоретического исследований дали реальную возможность приступить к работам по освоению этого физического явления. На протяжении почти 100 лет идут разработки в этой области, открываются новые сверхпроводящие материалы, ведутся поиски высокотемпературных сверхпроводников. В последние годы, особенно после создания теории сверхпроводимости, интенсивно развивается техническая сверхпроводимость.

Актуальность. Сегодня сверхпроводимость - это одна из наиболее изучаемых областей физики, явление, открывающее перед инженерной практикой серьёзные перспективы. Большое распространение получили приборы, основанные на явлении сверхпроводимости, без них уже не может обойтись ни современная электроника, ни медицина, ни космонавтика

Цель. Подробнее рассмотреть явление сверхпроводимости, его свойства, практическое применение, изучить теорию БКШ, а также выяснить перспективы развития данной области физики.

1)Выяснить, что собой представляет сверхпроводимость, причины его возникновения и условия возможного перехода вещества из нормального состояния в сверхпроводящее.

2)Объяснить причины, влияющие на разрушение сверхпроводящего состояния.

3)Раскрыть свойства и применение сверхпроводников.

Объект. Объектом данной курсовой работы является явление сверхпроводимости, сверхпроводники.

Предмет. Предметом являются свойства сверхпроводников и их применение.

Практическое применение. Явление сверхпроводимости используется для получения сильных магнитных полей, сверхпроводники применяются при создании вычислительных машин, для устройства модуляторов, выпрямителей, коммутаторов, персисторов и персистронов, измерительных приборов.

Методы исследования. Анализ научной литературы.

Глава 1. Открытие явления сверхпроводимости

1.1 Первые экспериментальные факты

В 1911 году в Лейдене голландский физик Х. Камерлинг-Оннес впервые наблюдал явление сверхпроводимости. Эта проблема исследовалась и ранее, опыты показывали, что с понижением температуры, сопротивление металлов падало. Одним из первых его исследований в области низких температур было изучение зависимости электрического сопротивления от температуры в ходе опыта с ртутной цепью. Ртуть тогда считалась самым чистым металлом, который можно было получить дистилляционной перегонкой. Изучая температурный ход электросопротивления Hg, он обнаружил, что при температуре ниже 4,2 0 К ртуть практически теряет сопротивление. Для этого опыта он использовал аппарат (рис. 1), который состоял из семи U-образных сосудов с сечением 0,005 мм 2 , соединённых перевёрнутыми. Такая форма сосудов нужна была для свободного сжимания и разжимания ртути без нарушения непрерывности ртутной нити. В точках 1 и 2 по трубкам 3 и 4 подводился ток, в точках 5 и 6 измерялось падение напряжения на участках ртутной цепи.

На рис.2 приведены результаты его экспериментов с ртутью. Следует обратить внимание на то, что температурный интервал, в котором сопротивление уменьшалось до нуля, чрезвычайно узок.

Рис. 2. Зависимость сопротивления платины и ртути от температуры.

На графике видно, что при температуре 4,2 0 К электрическое сопротивление ртути резко исчезло. Такое состояние проводника, при котором его электрическое сопротивление равно нулю, называется сверхпроводимостью, а вещества в таком состоянии - сверхпроводниками. Переход вещества в сверхпроводящее состояние происходит в очень узком температурном интервале (сотые доли градуса) и поэтому считают, что переход осуществляется при определённой температуре Т к, называемой критической температурой перехода вещества в сверхпроводящее состояние.

Экспериментально сверхпроводимость можно наблюдать двумя способами:

1) включив в общую электрическую цепь, по которой течёт ток, звено из сверхпроводника. В момент перехода в сверхпроводящее состояние разность потенциалов на концах этого звена обращается в нуль;

2) поместив кольцо из сверхпроводника в перпендикулярное к нему магнитное поле. Охладив затем кольцо ниже Т к, выключают поле. В результате в кольце индуцируется незатухающий электрический ток. Ток в таком кольце циркулирует неограниченно долго.

Камерлинг - Оннес продемонстрировал это, перевезя сверхпроводящее кольцо с текущим по нему током из Лейдена в Кембридж. В ряде экспериментов наблюдалось отсутствие затухания тока в сверхпроводящем кольце в течение примерно года. В 1959 г. Коллинз сообщил о наблюдавшемся им отсутствия уменьшения тока в течение двух с половиной лет. .

Эксперименты показали, что если создать ток в замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд). Изучение прохождения тока через ряд различных проводников показало, что сопротивление контактов между сверхпроводниками также равно нулю. Отличительным свойством сверхпроводимости является отсутствие явления Холла. В то время, как в обычных проводниках под влиянием магнитного поля, ток в металле смещается, в сверхпроводниках это явление отсутствует. Ток в сверхпроводнике как бы закреплен на своем месте.

Сверхпроводимость исчезает под действием следующих факторов:

1) повышение температуры;

С повышением температуры до некоторой T к почти внезапно появляется заметное омическое сопротивление. Переход от сверхпроводимости к проводимости тем круче и заметнее, чем однороднее образец (наиболее крутой переход наблюдается в монокристаллах).

2) действие достаточно сильного магнитного поля;

Переход от сверхпроводящего состояния в нормальное можно осуществить путем повышения магнитного поля при температуре ниже критической T к. Минимальное поле B к, в котором разрушается сверхпроводимость называется критическим магнитным полем. Зависимость критического поля от температуры описывается эмпирической формулой:

где В 0 - критическое поле, экстраполированное к абсолютному нулю температуры. Для некоторых веществ по - видимому имеет место зависимость от Т в первой степени. Если мы начнем увеличивать напряженность внешнего поля, то при критическом его значении сверхпроводимость разрушится. Чем ближе мы подходим к точке критической температуры, тем меньше должна быть напряженность внешнего магнитного поля для разрушения эффекта сверхпроводимости, и наоборот, при температуре, равной температуре абсолютного нуля напряженность должна быть максимальной по отношению к другим случаям для достижения такого же эффекта. Данная взаимосвязь иллюстрируется следующим графиком (рис. 3).

Если мы начнем увеличивать напряженность внешнего поля, то при критическом его значении сверхпроводимость разрушится. Чем ближе мы подходим к точке критической температуры, тем меньше должна быть напряженность внешнего магнитного поля для разрушения эффекта сверхпроводимости, и наоборот, при температуре, равной температуре абсолютного нуля напряженность должна быть максимальной по отношению к другим случаям для достижения такого же эффекта. При действии магнитного поля на сверхпроводник наблюдается особого вида гистерезис, а именно если повышая магнитное поле уничтожить сверхпроводимость при (H - сила поля, H к - повышенная сила поля):

то с понижением интенсивности поля сверхпроводимость появится вновь при поле, меняется от образца к образцу и обычно составляет 10% H к.

3) достаточно большая плотность тока в образце;

Повышение силы тока также приводит к исчезновению сверхпроводимости, то есть при этом понижается T к. Чем ниже температура, тем выше та предельная сила тока i к при которой сверхпроводимость уступает место обычной проводимости.

4) изменение внешнего давления;

Изменение внешнего давления р вызывает смещение Т к и изменение напряжённости магнитного поля, разрушающего сверхпроводимость.

1.2 Сверхпроводящие вещества

В дальнейшем было установлено, что не только у ртути, но и у других металлов и сплавов электрическое сопротивление при достаточном охлаждении становится равным нулю.

Самой высокой критической температурой среди чистых веществ обладает ниобий (9,22 0 К), а наиболее низкой иридий (0,14 0 К). Критическая температура зависит не только от химического состава вещества, но и от структуры самого кристалла. Например, серое олово--полупроводник, а белое олово - металл, переходящий в сверхпроводящее состояние при температуре 3,72 0 К. Две кристаллические модификации лантана (б-La и в-La) имеют разные критические температуры перехода в сверхпроводящее состояние (для б-La Т к =4,8 0 К, в-La Т к =5,95 0 К). Поэтому сверхпроводимость является свойством не отдельных атомов, а коллективный эффект, связанный со структурой всего образца.

Хорошие проводники (серебро, золото и медь) не обладают этим свойством, а многие другие вещества, которые в обычных условиях проводники очень плохие - наоборот, обладают. Для исследователей явилось полной неожиданностью и еще больше осложнило объяснение этого явления. Основную часть сверхпроводников составляют не чистые вещества, а их сплавы и соединения. Причем сплав двух несверхпроводящих веществ может обладать сверхпроводящими свойствами. Различают сверхпроводники первого и второго рода.

Сверхпроводниками первого рода являются чистые металлы, всего их насчитывается более 20. Среди них нет металлов, которые при комнатной температуре являются хорошими проводниками, а, наоборот, металлы, обладающие сравнительно плохой проводимостью при комнатной температуре (ртуть, свинец, титан и др.).

Сверхпроводниками второго рода являются химические соединения и сплавы, причём не обязательно это должны быть соединения или сплавов металлов, в чистом виде являющиеся сверхпроводниками первого рода. Например, соединения MoN, WC, CuS являются сверхпроводниками второго рода, хотя Mo, W, Cu и тем более N, C и S не являются сверхпроводниками. Число сверхпроводников второго рода составляет несколько сотен и продолжает увеличиваться. .

Долгое время сверхпроводящее состояние различных металлов и соединений удавалось получить лишь при весьма низких температурах, достижимых с помощью жидкого гелия. К началу 1986 г. максимальное наблюдавшееся значение критической температуры составляло уже 23 0 К.

1.3 Эффект Мейснера

В 1933 г. Мейснер и Оксенфельд установили, что за явлением сверхпроводимости скрывается нечто большее, чем идеальная проводимость, т. е. равенство нулю удельного сопротивления. Они обнаружили, что магнитное поле выталкивается из сверхпроводника независимо от того, чем это поле создано - внешним источником или током, текущим по самому сверхпроводнику (рис. 4). Оказалось, что магнитное поле не проникает в толщу сверхпроводящего образца.

Рис 4. Выталкивание потока магнитной индукции из сверхпроводника.

При температурах более высоких, чем критическая температура перехода в сверхпроводящее состояние, в образце, помещённом во внешнее магнитное поле, как и во всяком металле, индукция магнитного поля внутри отлична от нуля. Если, не выключая внешнего магнитного поля, постепенно снижать температуру, то в момент перехода в сверхпроводящее состояние магнитное поле вытолкнется из образца и индукция магнитного поля внутри станет равной нулю (В=0). Этот эффект назвали эффектом Мейснера.

Как известно, металлы, за исключением ферромагнетиков в отсутствие внешнего магнитного поля обладают нулевой магнитной индукцией. Это связано с тем, что магнитные поля элементарных токов, которые всегда имеются в веществе, взаимно компенсируются вследствие полной хаотичности их расположения.

Помещенные во внешнее магнитное поле, они намагничиваются, т.е. внутри "наводится" магнитное поле. Суммарное магнитное поле вещества, внесенного во внешнее магнитное поле, характеризуется магнитной индукцией, равной векторной сумме индукции внешнего и индукции внутреннего магнитных полей, т.е. . При этом суммарное магнитное поле может быть как больше, так и меньше магнитного поля.

Для того чтобы определить степень участия вещества в создании магнитного поля индукцией, находят отношение значений индукции. Коэффициент µ называют магнитной проницаемостью вещества. Вещества, в которых при наложении внешнего магнитного поля возникающее внутреннее поле добавляется к внешнему (µ > 1), называются парамагнетиками. При коэффициенте >1 происходит уменьшение внешнего поля в образце.

В диамагнитных веществах (<1) наблюдается ослабление приложенного поля. В сверхпроводниках В=0, что соответствует нулевой магнитной проницаемости. В поверхностном слое металла возникает стационарный электрический ток, собственное магнитное поле которого противоположно приложенному полю и компенсирует его, что в результате и приводит к нулевому значению индукции в толще образца.

Существование стационарных сверхпроводящих токов обнаруживается в следующем эксперименте: если над металлическим сверхпроводящим кольцом поместить сверхпроводящую сферу, то на ее поверхности индуцируется сверхпроводящий незатухающий ток. Его возникновение приводит к диамагнитному эффекту и возникновению сил отталкивания между кольцом и сферой, в результате будет наблюдаться парение сферы над кольцом. Глубина проникновения поля в образец является одной из основных характеристик сверхпроводника. Обычно глубина проникновения приблизительно равна 100..400Е. С ростом температуры глубина проникновения магнитного поля возрастает по закону:

Наиболее простая оценка глубины проникновения магнитного поля в сверхпроводник была дана братьями Фрицем и Гансом Лондонами. Приведём эту оценку. Будем предполагать, что имеем дело с полями, медленно меняющимися во времени. Так как сверхпроводники не ферромагнитны, то можно пренебречь разницей между и и записать фундаментальные уравнения электродинамики в виде

Причём мы будем также пренебрегать разницей между частной и полной производными по времени. Предполагая, что токи создаются движением только сверхпроводящих электронов, напишем далее, где - концентрация таких электронов. После дифференцирования по времени получим. Ускорение электрона найдётся из уравнения, если пренебречь действием магнитного поля. Тогда

где введено обозначение

Продифференцировав первое уравнение (4) по, исключив из уравнений (4) и (5) величины и, получим

Этому уравнению удовлетворяет, но такое решение не согласуется с эффектом Мейснера, так как внутри сверхпроводника должно быть. Лишнее решение получилось потому, что при выводе дважды применялась операция дифференцирования по времени. Чтобы автоматически исключить это решение, Лондоны ввели гипотезу, что в последнем уравнении производную следует заменить самим вектором. Это даёт

Для определения глубины проникновения магнитного поля внутрь сверхпроводника допустим, что последний ограничен плоскостью по одну сторону от неё. Направим ось внутрь сверхпроводника нормально к его границе. Пусть магнитное поле параллельно оси, так что. Тогда

И уравнение (8) даёт

Решение этого уравнения, обращающееся в нуль при, имеет вид

Постоянная интегрирования даёт поле на поверхности сверхпроводника. На протяжении длины магнитное поле убывает в раз. Величина принимается за меру глубины проникновения поля в металл.

Для получения численной оценки примем, что на каждый атом металла приходится один сверхпроводящий электрон, полагая см -3 . тогда по формуле (6) найдём см, что по порядку величины совпадает со значениями, полученными непосредственными измерениями.

Поверхностный слой сверхпроводника обладает особыми свойствами, связанными с отличной от нуля напряженностью магнитного поля в нем. Эти свойства оказывают очень существенное влияние на получение сверхпроводников с высокими критическими полями.

Возникает ситуация, когда поверхностные токи, часто называемые экранирующими, препятствуют проникновению в образец магнитного потока приложенного поля. Если внутри вещества, находящегося во внешнем поле, магнитный поток равен нулю, то говорят, что он проявляет идеальный диамагнетизм. При снижении плотности приложенного поля до нуля образец остается в своем ненамагниченном состоянии. В другом случае, когда магнитное поле приложено к образцу, находящемуся выше переходной температуры, конечная картина заметно изменится. Для большинства металлов (кроме ферромагнетиков) значение относительной магнитной проницаемости близко к единице. Поэтому плотность магнитного потока внутри образца практически равна плотности потока приложенного поля. Исчезновение электросопротивления после охлаждения не оказывает влияния на намагниченность, и распределение магнитного потока не меняется. Если теперь снизить приложенное поле до нуля, то плотность магнитного потока внутри сверхпроводника не может меняться, на поверхности образца возникают незатухающие токи, поддерживающие внутри магнитный поток. В результате образец остается все время намагниченным. Таким образом, намагниченность идеального проводника зависит от последовательности изменения внешних условий.

Эффект выталкивания магнитного поля из сверхпроводника можно пояснить на основе представлений о намагниченности. Если экранирующие токи, полностью компенсирующие внешнее магнитное поле, сообщают образцу магнитный момент m, то намагниченность M выражается соотношением:

где V - объем образца. Можно говорить о том, что экранирующие токи приводят к появлению намагниченности, соответствующей намагниченности идеального ферромагнетика с магнитной восприимчивостью, равной минус единице.

Эффект Мейсснера и явление сверхпроводимости тесно связаны между собой и являются следствием общей закономерности, которую и установила созданная более чем через полвека после открытия явления теория сверхпроводимости.

1.4 Изотопический эффект

В 1950 г. Е. Максвелл и Ч. Рейнольдс открыли изотопический эффект, который имел большое значение для создания современной теории сверхпроводимости. Исследование нескольких сверхпроводящих изотопов ртути показало, что существует связь между критической температурой перехода в сверхпроводящее состояние и массой изотопов. При изменении массы М изотопа от 199,5 до 203,4 критическая температура изменялась от 4,185 до 4,14 К. Для данного сверхпроводящего химического элемента была установлена формула, оправдывающаяся с достаточной точностью:

где const имеет определённое значение для каждого элемента.

Масса изотопа является характеристикой кристаллической решётки, так как в неё основной вклад вносят ионы металла. Масса определяет многие свойства решётки. Известно, что частота щ колебаний решётки связана с массой:

Сверхпроводимость, которая является свойством электронной системы металла, оказывается связанной, ввиду обнаружения изотопического эффекта, с состоянием кристаллической решетки. Следовательно, возникновение эффекта сверхпроводимости обусловлено взаимодействием электронов с решеткой металла. Это взаимодействие ответственно за сопротивление металла в обычном состоянии. При определенных условиях оно должно приводить к исчезновению сопротивления, то есть к эффекту сверхпроводимости.

1.5 Предпосылки создания теории сверхпроводимости

Первой теорией, достаточно успешной описавшей свойства сверхпроводников, была теория Ф. Лондона и Г. Лондона, предложенная в 1935 г. Лондоны в своей теории основывались на двухжидкостной модели сверхпроводника. Считалось, что при в сверхпроводнике имеются «сверхпроводящие» электроны с концентрацией и «нормальные» электроны с концентрацией, где -полная концентрация проводимости). Плотность сверхпроводящих электронов уменьшается с ростом и обращается в нуль при. При она стремится к плотности всех электронов. Ток сверхпроводящих электронов течёт через образец без сопротивления.

Лондонами в дополнение к уравнения Максвелла были получены уравнения для электромагнитного поля в таком сверхпроводнике, из которых вытекали его основные свойства: отсутствие сопротивления постоянному току и идеальный диамагнетизм. Однако в силу того, что теория Лондонов была феноменологической, она не отвечала на главный вопрос, что представляют собой «сверхпроводящие» электроны. Кроме того, она имела ещё ряд недостатков, которые были устранены В.Л. Гинзбургом и Л.Д. Ландау.

В теории Гинзбурга - Ландау для описания свойств сверхпроводников была привлечена квантовая механика. В этой теории вся совокупность сверхпроводящих электронов описывалась волновой функцией от одной пространственной координаты. Вообще говоря, волновая функция электронов в твёрдом теле есть функция координат. Введением функции устанавливалось когерентное, согласованное поведение всех сверхпроводящих электронов. Действительно, если все электронов ведут себя совершенно одинаково, согласовано, то для описания их поведения достаточно той же самой волновой функции, что и для описания поведения одного электрона, т.е. функции от одной переменной.

Несмотря на то что теория Гинзбурга - Ландау, получившая дальнейшее развитие в работах А.А.Абрикосова, описывала многие свойства сверхпроводников, она не могла дать понимания явления сверхпроводимости на микроскопическом уровне.

В данной главе рассматриваются вопросы открытия явления сверхпроводимости, первые опытные факты, первые теории, а также некоторые свойства сверхпроводников.

Анализируя вышеизложенное можно сделать следующие выводы:

1) Такое состояние проводника, при котором его электрическое сопротивление равно нулю, называется сверхпроводимостью, а вещества в таком состоянии - сверхпроводниками.

2) Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд).

3) Сверхпроводимость исчезает под действием следующих факторов: повышение температуры, действие достаточно сильного магнитного поля, достаточно большая плотность тока в образце, изменение внешнего давления.

4) Магнитное поле выталкивается из сверхпроводника независимо от того, чем это поле создано - внешним источником или током, текущим по самому сверхпроводнику.

5) Существует связь между критической температурой перехода в сверхпроводящее состояние и массой изотопов, которое называется изотопическим эффектом.

6) Изотопический эффект указал на то, что колебания решетки участвуют в создании сверхпроводимости.

Глава 2. Теория сверхпроводимости

2.1 Теория БКШ

В 1957 г. Бардиным, Купером и Шриффером была построена последовательная теория сверхпроводящего состояния вещества (теория БКШ). Ещё задолго до этого Ландау была создана теория сверхтекучести гелия II. Оказалось, что сверхтекучесть - это макроскопический квантовый эффект. Однако перенести теорию Ландау на явление сверхпроводимости мешало то обстоятельство, что атомы гелия, обладая нулевым спином, подчиняются статистике Бозе-Эйнштейна. Электроны же, обладая половинным спином, подчиняются принципу Паули и статистике Ферми - Дирака. Для таких частиц невозможна бозе-эйнштейновская конденсация, необходимая для возникновения сверхтекучести. Учёные предположили, что электроны группируются в пары, которые обладают нулевым спином и ведут себя как бозе - частицы. Независимо от них в 1958 г. Н.Н. Боголюбов разработал более совершенный вариант теории сверхпроводимости.

Теория БКШ относится к идеализированной модели, в которой пока полностью отбрасываются структурные особенности металла. Металл рассматривается в виде потенциального ящика, заполненного электронным газом, подчиняющимся статистике Ферми. Между отдельными электронами действуют силы кулоновского отталкивания, в большей мере ослабленные за счёт поля атомных остовов. Изотопный эффект в сверхпроводимости указывает на наличие взаимодействия электронов с тепловыми колебаниями решётки (с фононами).

Электрон, движущийся в металле, электрическими силами деформирует--поляризует кристаллическую решетку образца. Вызванное этим смещение ионов решетки отражается на состоянии другого электрона, поскольку он теперь оказывается в поле поляризованной решетки, несколько изменившей свою периодическую структуру. Таким образом, кристаллическая решетка выступает в роли промежуточной среды в межэлектронных взаимодействиях, так как с ее помощью электроны реализуют притяжение друг к другу. При высоких температурах достаточно интенсивное тепловое движение отбрасывает частицы друг от друга, фактически уменьшая силу притяжения. Но при низких температурах силы притяжения играют очень важную роль.

Два электрона отталкиваются друг от друга, если находятся в пустоте. В среде же сила их взаимодействия равна:

где е - диэлектрическая проницаемость среды. Если среда такова, что е<0, то одноименные заряды, в том числе и электроны, будут притягиваться. Кристаллическая решетка некоторых веществ является той средой, в которой выполняется это условие, а значит при определенных температурах возможно возникновение эффекта сверхпроводимости. Таким образом, эффект взаимного притяжения электронов не противоречит законам физики, так как происходим в некоторой среде.

Рассмотрим металл при Т=0 0 К. Его кристаллическая решетка совершает «нулевые» колебания, существование которых связано с квантово-механическим соотношением неопределенностей. Электрон, движущийся в кристалле, нарушает режим колебаний и переводит решетку в возбужденное состояние. Обратный переход на прежний энергетический уровень сопровождается излучением энергии, захватываемой другим электроном и возбуждающей его. Возбуждение кристаллической решетки описывается звуковыми квантами - фононами, поэтому описанный выше процесс можно представить как излучение фонона одним электроном и поглощение его другим электроном, кристаллическая решетка же играет промежуточную роль передатчика. Обмен фононами обуславливает их взаимное притяжение.

При низких температурах это притяжение у ряда веществ преобладает над кулоновскими силами отталкивания электронов. При этом электронная система превращается в связанный коллектив, и чтобы ее возбудить требуется затрата некоторой конечной энергии. Энергетический спектр электронной системы в этом случае не будет непрерывным - возбужденное состояние отделено от основного энергетической щелью.

Теперь установлено, что нормальное состояние металла отличается от сверхпроводящего характером энергетического спектра электронов вблизи поверхности Ферми. В нормальном состоянии при низких температурах электронное возбуждение соответствует переходу электрона из первоначально занятого состояния к (<к F) под поверхностью Ферми в свободное состояние к (>к F) над поверхностью Ферми. Энергия, необходимая для возбуждения такой электронно - дырочной пары в случае сферической поверхности Ферми, равна

Поскольку к и к 1 могут лежать достаточно близко к поверхности Ферми, то.

Электронную систему в сверхпроводнике можно представить как состоящую из связанных пар электронов (куперовских пар), а возбуждение, как разрыв пары. Размер электронной пары составляет приблизительно ~10 -4 см, размер периода решетки - 10 -8 см. То есть электроны в паре находятся на огромном расстоянии.

Наиболее характерным свойством металла в сверхпроводящем состоянии является то, что энергия возбуждения пары всегда превышает некоторую определённую величину 2Д, которую называют энергией спаривания. Другими словами, в спектре энергий возбуждения со стороны малых энергий имеется щель. Например, для металлов Hg, Pb, V, Nb значение 2Д соответствует тепловой энергии при температурах 18 0 К, 29 0 К, 18 0 К и 30 0 К.

Величина энергии спаривания измеряется непосредственно на опыте: при исследовании поглощения электромагнитного излучения - поглощается только излучение с частотой ђщ = 2Д, при исследовании экспоненциального изменения затухания звука и др.

При наличии щели в энергетическом спектре квантовые переходы системы не всегда будут возможны. Электронная система не будет возбуждаться при малых скоростях движения, следовательно, движение электронов будет происходить без трения, что означает отсутствие сопротивления. При определенном критическом токе электронная система сможет перейти на следующий энергетический уровень и сверхпроводимость разрушится.

2.2 Щель в энергетическом спектре

Первые указания на существование энергетической щели были получены из экспоненциального закона спадания электронной теплоёмкости сверхпроводника:

c es ~ г T k e - bTk / T ~ c ns e - bTk / T . (16)

Энергетическая щель в сверхпроводниках непосредственно наблюдается на опыте, при этом не только подтверждается существование щели в спектре, но и измеряется ее величина. Исследовался переход электронов через тонкий непроводящий слой толщиной ~10Е, разделяющий нормальную и сверхпроводящую пленки. При наличии барьера имеется конечная вероятность прохождения электрона через барьер. В нормальном металле заполнены все уровни энергии, вплоть до максимального е F , в сверхпроводящем же до е F -Д. Прохождение тока при этом невозможно.

Наличие энергетической щели в сверхпроводнике приводит к отсутствию соответствующих состояний, между которыми происходил бы переход. Для того чтобы переход мог произойти, необходимо поместить систему во внешнее электрическое поле. В поле вся картина уровней смещается. Эффект становится возможным, если приложенное внешнее напряжение становится равным Д/e. Туннельный ток появляется при конечном напряжении U, когда eU равно энергетической щели. Отсутствие туннельного тока при сколь угодно малом приложенном напряжении является доказательством существования энергетической щели.

В настоящее время разработан ряд методов, позволяющих обнаружить такую щель и измерить её ширину. Один из них основан на изучении поглощения электромагнитных волн далёкой инфракрасной области металлами. Идея метода состоит в следующем. Если на сверхпроводник направить поток электромагнитных волн и непрерывно изменять их частоту щ, то до тех пор, пока энергия квантов ђщ этого излучения остаётся меньше ширины щели Е щ, (если таковая, конечно, есть), энергия излучения поглощаться сверхпроводником не должна. При частоте же щ к, для которой ђщ к = Е щ, должно начаться интенсивное поглощение излучения, возрастая до его значений в нормальном металле. Измерив щ к, можно определить ширину щели Е щ.

Опыты полностью подтвердили факт наличия щели в энергетическом спектре электронов проводимости у всех известных сверхпроводников. В качестве примера в таблице приведены ширина щели Е щ при Т = 0 0 К для ряда металлов и критическая температура перехода их в сверхпроводящее состояние. Из данных этой таблицы видно, что щель Е щ является весьма узкой ~ 10 -3 -10 -2 эВ; между шириной щели и критической температурой перехода Т к наблюдается непосредственная связь: чем выше Т к, тем шире щель Е щ. теория

БКШ приводит к следующему приближённому выражению, связывающему Т к с Е щ (0):

Е щ (0)=3,5кТ к, (17)

которое достаточно хорошо подтверждается опытом.

В теории сверхпроводимости большинство результатов получено для изотропной модели. Реальные же металлы в действительности анизотропны, что проявляется во многих экспериментах. При довольно широких предположениях можно получить формулу:

где - единичный вектор по направлению импульса р; и - радиус вектор ферми поверхности и скоростей на ней. Величина зависит от направления. Согласно экспериментальным данным, изменение. В то же время температурная зависимость одинакова для всех направлений, т.е. .

Таблица 1.

Вещество

Е щ (0),10 -3 эВ

Е щ =3,5кТ к

Анизотропия видна уже при сопоставлении теоретических и экспериментальных данных для теплоёмкости. При низких температурах

где - минимальная щель, а по теоретической кривой (для изотропной модели) , где - некоторая усреднённая щель. Поэтому, как правило, теоретическая кривая при проходит ниже экспериментальной.

Существуют различные методы более детального определения анизотропии щели. Так, измерение теплопроводности монокристальных одноостных сверхпроводников даёт возможность определить, расположена ли минимальная щель в направлении главной оси или лежит в базисной плоскости. Характер анизотропии щели удаётся установить и из экспериментов с туннельным контактом, если один из сверхпроводников является монокристаллом. Наиболее интересные результаты об анизотропии дают эксперименты по поглощению звука. Если частота звука - энергии связи пар, то при низких температурах поглощение происходит только на возбуждениях, т.е. пропорционально. Однако надо учесть, что механизм поглощения звука есть обратный эффект Черенкова. Это значит, что звук поглощают только те электроны, у которых проекция скорости на направление распространения звука совпадает со скоростью звука, т.е. . Но величина скорости электронов в металле см/сек, а скорости звука см/сек; это значит, что, т.е. перпендикулярно, иначе говоря, звук поглощается электронами, лежащими на контуре, получающемся при пересечении ферми поверхностью плоскостью, перпендикулярной. Ввиду этого низкотемпературное поглощение звука определяется минимальным значением щели на этом контуре. Меняя направление распространения звука можно получить довольно детальные сведения о щели.

Анизотропия щели проявляется также в том, что изменение термодинамических величин при введении в сверхпроводник дефектов больше, чем для изотропной модели. Например, при уменьшение по сравнению с (для чистого металла) , т.е. пропорционально средней квадратичной анизотропии.

2.3 Бесщелевая сверхпроводимость

В первые годы после создания теории БКШ наличие энергетической щели в электронном спектре считалось характерным признаком сверхпроводимости, но также известна сверхпроводимость и без энергетической щели - бесщелевая сверхпроводимость.

Как было впервые показано А.А. Абрикосовым и Л.П. Горьковым при введении магнитных примесей критическая температура эффектно уменьшается. Атомы магнитной примеси обладают спином, а значит спиновым магнитным моментом. При этом спины пары оказываются как бы в параллельном и антипараллельном магнитном поле примеси. С увеличением концентрации атомов, магнитной примеси в сверхпроводнике все большее число пар будет разрушаться, и в соответствии с этим ширина энергетической щели будет уменьшаться. При некоторой концентрации n, равной 0,91n кр (n кр - значение концентрации, при которой полностью исчезает сверхпроводящее состояние), энергетическая щель становиться равной нулю.

Можно предположить, что появление бесщелевой сверхпроводимости связано с тем, что при взаимодействии с атомами примеси часть пар оказывается временно разорванными. Такому временному распаду пары соответствует появление локальных энергетических уровней в пределах самой энергетической щели. С ростом концентрации примесей щель все больше заполняется этими локальными уровнями до тех пор, пока не исчезнет совсем. Существование электронов образовавшихся при разрыве пары, приводит к исчезновению энергетической щели, а оставшиеся куперовские пары обеспечивают равенство нулю электронного сопротивления.

Мы приходим к выводу, что существование щели само по себе вовсе не является обязательным условием проявление сверхпроводящего состояния. Тем более что бесщелевая сверхпроводимость, как оказалось явление не столь уж и редкое. Главное - это наличие связанного электронного состояния - куперовской пары. Именно это состояние может проявлять сверхпроводящие свойства и в отсутствии энергетической щели.

2.5 Образование электронных пар

Запрещённые зоны в энергетическом спектре полупроводников возникают вследствие взаимодействия электронов с решёткой, создающей в кристалле поле с периодически меняющимся потенциалом.

Естественно предположить, что и энергетическая щель в зоне проводимости металла, находящегося в сверхпроводящем состоянии, возникает из-за какого-то дополнительного взаимодействия электронов, появляющегося при переходе металла в это состояние. Природа этого взаимодействия состоит в следующем.

Свободный электрон зоны проводимости, двигаясь сквозь решётку и взаимодействуя с ионами, слегка «оттягивает» их из положения равновесия (рис 5), создавая в «кильваторе» своего движения избыточный положительный заряд, к которому может быть притянут другой электрон. Поэтому в металле помимо обычного кулоновского отталкивания между электронами может возникать косвенная сила притяжения, связанная с наличием решётки положительных ионов. Если эта сила оказывается больше силы отталкивания, то энергетически выгодным становится объединение электронов в связанные пары, которые получили название куперовских пар.

При образовании куперовских пар энергия системы уменьшается на величину энергии связи Е св электронов в паре. Это означает, что если в нормальном металле электроны зоны проводимости при Т=0К обладали максимальной энергией Е F , то при переходе в состояние, в котором они связаны в пары, энергия двух электронов (пары) уменьшается на Е св, а энергия каждого из них - на Е св /2, так как именно такую энергию надо затратить, чтобы разрушить эту пару и перевести электроны в нормальное состояние (рис. 6а). Поэтому между верхним энергетическим уровнем электронов, находящихся в связанных парах, и нижним уровнем нормальных электронов должна существовать щель шириной Е св, которая как раз и необходима для появления сверхпроводимости. Легко убедиться, что эта щель является подвижной, т. е. способной смещаться под действием внешнего поля вместе с кривой распределения электронов по состояниям.

На рис. 7 показана схематическая модель куперовской пары. Она состоит из двух электронов, движущихся вокруг индуцированного положительного заряда, напоминая в какой-то мере атом гелия. Каждый электрон, входящий в пару, может обладать большим импульсом и волновым вектором; пара же в целом (центр масс пары) может при этом покоиться, обладая нулевой скоростью поступательного движения. Это разъясняет непонятное на первый взгляд свойство электронов, заселяющих верхние уровни заполненной части зоны проводимости при наличии щели (рис.6а). У таких электронов и огромны (и), а скорость поступательного движения. Поскольку центральный положительный заряд пары индуцирован самими движущимися электронами, то под действием внешнего поля куперовская пара может свободно перемещаться по кристаллу, а энергетическая щель Е щ смещаться вместе со всем распределением, как показано на рис. 6б. Таким образом, и с этой точки зрения удовлетворяются условия появления сверхпроводимости.

Рис.5 рис. 7

Однако не все электроны зоны проводимости способны связываться в куперовские пары. Так как этот процесс сопровождается изменением энергии электронов, то связываться в пары могут лишь те электроны, которые способны изменять свою энергию. Таковыми являются только электроны, размещающиеся в узкой полоске, расположенной у уровня Ферми («фермиевские электроны»). Грубая оценка показывает, что число таких электронов составляет ~ 10 -4 от общего числа, а ширина полоски по порядку величины равна 10 -4 .

На рис. построена в пространстве импульсов сфера Ферми радиусом.

На ней проведены кольца шириной dl, расположенные относительно оси р у под углами ц 1, ц 2 , ц 3 . электроны, векторы которых своими концами попадают на площадь данного кольца, образуют группу, обладающую практически одинаковым импульсом. Число электронов в каждой такой группе пропорционально площади соответствующего кольца. Так как с ростом ц площадь колец увеличивается и число электронов в соответствующих им группах. Связываться в пары могут, вообще говоря, электроны любой из этих групп. Максимальное же число пар образуют те электроны, которых больше. А больше всего электронов, у которых импульсы равны по величине и противоположны по направлению. Концы векторов у таких электронов располагаются не на узкой полоске, а по всей поверхности Ферми. Этих электронов так много по сравнению с любыми другими электронами, что практически образуется лишь одна группа куперовских пар - пары, состоящие из электронов, имеющих равные по величине и противоположные по направлению импульсы. Замечательной особенностью этих пар является их импульсная упорядоченность, состоящая в том, что центры масс всех пар имеют одинаковый импульс, равный нулю, когда пары покоятся, и отличный от нуля, но одинаковый для всех пар, когда пары движутся по кристаллу. Это приводит к довольно жёсткой корреляции движения каждого отдельного электрона с движением всех остальных электронов, связанных в пары.

Электроны «движутся наподобие альпинистов, которые связаны друг с другом верёвкой: если один из них выходит из строя благодаря неровности рельефа (обусловленной тепловым движением атомов), то соседи возвращают его обратно». Это свойство делает коллектив куперовских пар мало восприимчивым к рассеянию. Поэтому если пары тем или иным внешнем воздействием приведены в упорядоченное движение, то созданный ими электрический ток может существовать в проводнике сколь угодно долго даже после прекращения действия того фактора, который его вызвал. Так как таким фактором может быть только электрическое поле Е, то это означает, что в металле, в котором фермиевские электроны связаны в куперовские пары, возбуждённый электрический ток i продолжает существовать неизменным и после прекращения действия поля: i=const при Е=0. Это является свидетельством того, что металл действительно находится в сверхпроводящем состоянии, обладая идеальной проводимостью. Грубо такое состояние электронов можно сравнить с состоянием тел, движущихся без трения: такие тела, получив начальный импульс, могут двигаться сколь угодно долго, сохраняя его неизменным.

Выше мы сравнивали куперовскую пару с атомом гелия. Однако к этому сравнению следует относится очень осторожно. Как уже отмечалось, положительный заряд пары является непостоянным и строго фиксированным, как у атома гелия, а наведённым самими движущимися электронами и перемещающимися вместе с ними. Кроме того, энергия связи электронов в паре на много порядков ниже энергии связи их в атоме гелия. Согласно данным таблицы 1, для куперовских пар Е св =(10 -2 -10 -3) эВ, в то время как для атомов гелия Е св =24,6 эВ. Поэтому размер куперовской пары на много порядков больше размера атома гелия. Расчёт показывает, что эффективный диаметр пары L ? (10 -7 -10 -6) м; его называют также длиной когерентности. В объёме L 3 , занимаемой парой, размещаются центры массы ~ 10 6 других таких пар. Поэтому эти пары нельзя рассматривать как какие-то пространственно разделённые «квазимолекулы». С другой стороны, возникающее колоссальное перекрытие волновых функций всех пар усиливает квантовый эффект спаривания электронов до макроскопического его проявления.

Существует другая аналогия, причём очень глубокая, куперовских пар с атомами гелия. Она состоит в том, что пара электронов представляет собой систему с целом спином, так же как и атомы. Известно, что сверхтекучесть гелия можно рассматривать как проявление специфического эффекта конденсации бозонов на нижнем энергетическом уровне. С этой точки зрения сверхпроводимость можно считать как бы сверхтекучестью куперовских пар электронов. Эта аналогия идёт ещё дальше. Другой изотоп гелия, ядра которого имеют полуцелый спин, не обладает сверхтекучестью. Но самый замечательный факт, открытый совсем недавно, состоит в том, что при понижении температуры атомы могут образовывать пары, вполне аналогичные куперовским, и жидкость становится сверхтекучей. Теперь можно сказать, что сверхтекучесть - это как бы сверхпроводимость пар его атомов.

Таким образом, процесс спаривания электронов является типичным коллективным эффектом. Силы притяжения, возникающие между электронами, не могут привести к спариванию двух изолированных электронов. В образовании пары участвует по существу как весь коллектив фермиевских электронов, так и атомы решётки. Поэтому и энергия связи (ширина щели Е щ) зависит от состояния коллектива электронов и атомов в целом. При абсолютном нуле, когда все фермиевские электроны связаны в пары, энергетическая щель Е щ достигает максимальной ширины Е щ (0). С повышением температуры появляются фононы, способные сообщить электронам при рассеянии энергию, достаточную для разрыва пары. При низких температурах концентрация этих фононов невелика, вследствие чего и случаи разрыва электронных пар будут редкими. Разрыв некоторых пар не может привести к исчезновению щели для электронов остальных пар, но делает её несколько уже; границы щели приближаются к уровню Ферми. С дальнейшим повышением температуры концентрация фононов растёт очень быстро, кроме того, растёт их средняя энергия. Это приводит к резкому увеличению скорости разрыва электронных пар и соответственно к быстрому уменьшению ширины энергетической щели для остающихся пар. При некоторой температуре Т к щель исчезает полностью, края её сливаются с уровнем Ферми и металл переходит в нормальное состояние.

2.5 Эффективное взаимодействие между электронами, обусловленное фононами металла

Фрелих показал, что взаимодействие электронов с фононами может приводить к эффективному взаимодействию между электронами. Ниже мы изложим основные положения его теории.

В идеальной решётке движение электрона в зоне проводимости определяется блоховской функцией

которая представляет плоскую волну, модулированную функцией u k (r), удовлетворяющей условию периодичности u k (r) = u k (r+n), где n - вектор решётки, k - волновой вектор; ч у - функция спинового состояния. Её явный вид и вид функции u k (r) нам далее не потребуется.

Электронная волновая функция всего металла, содержащего N электронов в объёме V, является антисимметричным произведением N функции ц k,у. Основное состояние соответствует заполнение состояний, лежащих в k - пространстве внутри поверхности Ферми. Будем предполагать, что эта поверхность лежит далеко от границы зоны и изотропна, т. е. представляет собой сферу радиуса k 0 . при возбуждении электроны из состояний |k| < k 0 переходят в состояния k| > k 0 .

Если е k - энергия состояния электрона с квазиимпульсом ђk, то в представлении вторичного квантования гамильтониан системы электронов (с точностью до постоянного слагаемого) имеет вид

где a + kу, a kу - фермиевские операторы рождения и уничтожения квазичастиц.

Для определения оператора взаимодействия с фононами решётки металла учтём, что при смещении положительного иона, занимающего n - е место в решётке, на величину о n , энергия взаимодействия электрона с решёткой изменится на величину. Следовательно, в представлении вторичного квантования оператор электрон - фононного взаимодействия можно написать в виде

где - оператор, выражающийся через ферми-операторы a kу и блоховские функции с помощью равенства

Оператор смещения ионов определён, следовательно,

Где, - бозе-операторы; s - скорость продольных звуковых волн, соответствующих волновому вектору q, так как только продольные волны дают вклад и для них щ(q) = sq.

Учитывая, что сумма, если, и равна нулю, если, получаем окончательное выражение операторов электрон-фононного взаимодействия в представлении чисел заполнения

где (1825) - сокращённое обозначение сумм произведений ферми-операторов; - малая величина, определяющая электрон-фононное взаимодействие. Интегрирование ведётся по одной элементарной ячейке. Буквами «э.с.» указываются члены, эрмитово сопряжённые ко всем предыдущим.

Оператор взаимодействия (24) не зависит от спинового состояния электронов, поэтому в дальнейшем спиновый индекс у можем не писать. Оператор (24) получен в предположении, что ионы в решётке движутся как единое целое, что D(q) зависит только от q и не зависит от k и что колебания ионов в решётке делятся на продольные и поперечные для всех значений q, поэтому взаимодействие осуществляется только с продольными фононами. Без этих упрощений вычисления сильно усложняются. Такое усложнение оправдывается только при необходимости получить количественные результаты.

Подобные документы

    Квантование магнитного потока. Термодинамическая теория сверхпроводимости. Эффект Джозефсона как сверхпроводящее квантовое явление. Сверхпроводящие квантовые интерференционные детекторы, их применение. Прибор для измерения слабых магнитных полей.

    контрольная работа , добавлен 09.02.2012

    Понятие и природа сверхпроводимости, ее практическое применение. Характеристика свойств сверхпроводников 1-го и 2-го рода. Сущность "теории Бардина-Купера-Шриффера" (БКШ), объясняющей явление сверхпроводимости металлов при сверхнизких температурах.

    реферат , добавлен 01.12.2010

    Открытие сверхпроводников, эффект Мейснера, высокотемпературная сверхпроводимость, сверхпроводящий бум. Синтез высокотемпературных сверхпроводников. Применение сверхпроводящих материалов. Диэлектрики, полупроводники, проводники и сверхпроводники.

    курсовая работа , добавлен 04.06.2016

    Открытие особенностей изменения сопротивления ртути в 1911 году. Сущность явления сверхпроводимости, характерного для многих проводников. Наиболее интересные возможные промышленного применения сверхпроводимости. Эксперимент с "магометовым гробом".

    презентация , добавлен 22.11.2010

    Гипотезы монополя Дирака. Магнитный заряд электрона, который тождественен кванту магнитного потока, наблюдаемого в условиях сверхпроводимости. Анализ эффекта квантования магнитного потока. Закон Кулона: взаимодействие электрического и магнитного заряда.

    статья , добавлен 09.12.2010

    Обращение в нуль электрического сопротивления постоянному току и выталкивание магнитного поля из объема. Изготовление сверхпроводящего материала. Промежуточное состояние при разрушении сверхпроводимости током. Сверхпроводники первого и второго рода.

    курсовая работа , добавлен 24.07.2010

    Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.

    научная работа , добавлен 20.04.2010

    Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости. Изучение свойств вещества при низких температурах. Реакция сверхпроводников на примеси. Физическая природа сверхпроводимости и перспективы ее практического применения.

    презентация , добавлен 11.04.2015

    История открытия сверхпроводников, их классификация. Фазовый переход в сверхпроводящее состояние. Научные теории, описывающие это явление и опыты, его демонстрирующие. Эффект Джозефсона. Применение сверхпроводимости в ускорителях, медицине, на транспорте.

    курсовая работа , добавлен 04.04.2014

    Научно-теоретическая поддержка обоснования проекта, опирается на теперь, считающимися элементарными знания теоретической физики. Это ряд открытий законов и замечательных эффектов, во многих случаях до сегодняшнего дня почему-то не используемых.

просмотров