Как разделить круг на сегменты. Деление окружности на равные части

Как разделить круг на сегменты. Деление окружности на равные части

Деление окружности на три равные части. Устанавливают угольник с углами 30 и 60° большим катетом параллельно одной из центровых линий. Вдоль гипотенузы из точки 1 (первое деление) проводят хорду (рис. 2.11, а ), получая второе деление – точку 2. Перевернув угольник и проведя вторую хорду, получают третье деление – точку 3 (рис. 2.11, б ). Соединив точки 2 и 3; 3 и 1 прямыми, получают равносторонний треугольник.

Рис. 2.11.

а, б – с помощью угольника; в – с помощью циркуля

Ту же задачу можно решить с помощью циркуля. Поставив опорную ножку циркуля в нижний или верхний конец диаметра (рис. 2.11, в ), описывают дугу, радиус которой равен радиусу окружности. Получают первое и второе деления. Третье деление находится на противоположном конце диаметра.

Деление окружности на шесть равных частей

Раствор циркуля устанавливают равным радиусу R окружности. Из концов одного из диаметров окружности (из точек 1, 4 ) описывают дуги (рис. 2.12, а, б ). Точки 1, 2, 3, 4, 5, 6 делят окружность на шесть равных частей. Соединив их прямыми, получают правильный шестиугольник (рис. 2.12, б ).

Рис. 2.12.

Ту же задачу можно выполнить с помощью линейки и угольника с углами 30 и 60° (рис. 2.13). Гипотенуза угольника при этом должна проходить через центр окружности.

Рис. 2.13.

Деление окружности на восемь равных частей

Точки 1, 3, 5, 7 лежат на пересечении центровых линий с окружностью (рис. 2.14). Еще четыре точки находят с помощью угольника с углами 45°. При получении точек 2, 4, 6, 8 гипотенуза угольника проходит через центр окружности.

Рис. 2.14.

Деление окружности на любое число равных частей

Для деления окружности на любое число равных частей пользуются коэффициентами, приведенными в табл. 2.1.

Длину l хорды, которую откладывают на заданной окружности, определяют по формуле l = dk, где l – длина хорды; d – диаметр заданной окружности; k – коэффициент, определяемый по табл. 1.2.

Таблица 2.1

Коэффициенты для деления окружностей

Чтобы разделить окружность заданного диаметра 90 мм, например, на 14 частей, поступают следующим образом.

В первой графе табл. 2.1 находят число делений п, т.е. 14. Из второй графы выписывают коэффициент k, соответствующий числу делений п. В данном случае он равен 0,22252. Диаметр заданной окружности умножают на коэффициент и получают длину хорды l= dk = 90 0,22252 = 0,22 мм. Полученную длину хорды откладывают циркулем-измерителем 14 раз на заданной окружности.

Нахождение центра дуги и определение величины радиуса

Задана дуга окружности, центр и радиус которой неизвестны.

Для их определения нужно провести две непараллельные хорды (рис. 2.15, а ) и восставить перпендикуляры к серединам хорд (рис. 2.15, б ). Центр О дуги находится на пересечении этих перпендикуляров.

Рис. 2.15.

Сопряжения

При выполнении машиностроительных чертежей, а также при разметке заготовок деталей на производстве часто приходится плавно соединять прямые линии с дугами окружностей или дугу окружности с дугами других окружностей, т.е. выполнять сопряжение.

Сопряжением называют плавный переход прямой в дугу окружности или одной дуги в другую.

Для построения сопряжений надо знать величину радиуса сопряжений, найти центры, из которых проводят дуги, т.е. центры сопряжений (рис. 2.16). Затем нужно найти точки, в которых одна линия переходит в другую, т.е. точки сопряжений. При построении чертежа сопрягающиеся линии нужно доводить точно до этих точек. Точка сопряжения дуги окружности и прямой лежит на перпендикуляре, опущенном из центра дуги на сопрягаемую прямую (рис. 2.17, а ), или на линии, соединяющей центры сопрягаемых дуг (рис. 2.17, б ). Следовательно, для построения любого сопряжения дугой заданного радиуса нужно найти центр сопряжения и точку (точки ) сопряжения.

Рис. 2.16.

Рис. 2.17.

Сопряжение двух пересекающихся прямых дугой заданного радиуса. Даны пересекающиеся под прямым, острым и тупым углами прямые линии (рис. 2.18, а ). Нужно построить сопряжения этих прямых дугой заданного радиуса R.

Рис. 2.18.

Для всех трех случаев можно применять следующее построение.

1. Находят точку О – центр сопряжения, который должен лежать на расстоянии R от сторон угла, т.е. в точке пересечения прямых, проходящих параллельно сторонам угла на расстоянии R от них (рис. 2.18, б ).

Для проведения прямых, параллельных сторонам угла, из произвольных точек, взятых на прямых, раствором циркуля, равным R, делают засечки и к ним проводят касательные (рис. 2.18, б ).

  • 2. Находят точки сопряжений (рис. 2.18, в). Для этого из точки О опускают перпендикуляры на заданные прямые.
  • 3. Из точки О, как из центра, описывают дугу заданного радиуса R между точками сопряжений (рис. 2.18, в).

На вопрос как разделить круг на три равные части циркулем) ? скажи мне это пожалуйста!! заданный автором Посольство лучший ответ это
_______
Пусть дан круг радиуса R. Надо поделить его на три равные части с помощью циркуля. Раскройте циркуль на величину радиуса круга. Можно воспользоваться при этом линейкой, а можно поставить иглу циркуля в центр круга, а ножку отвести до ссылка , описывающей круг. Линейка в любом случае еще пригодится позже.
Установите иглу циркуля в произвольном месте на окружности, описывающей круг, и грифелем нарисуйте небольшую дугу, пересекающую внешний контур круга. Затем установите иглу циркуля в найденную точку ссылка и еще раз проведите дугу тем же радиусом (равным радиусу круга) .
Повторяйте эти действия, пока следующая точка пересечения не совпадет с самой первой. Вы получите шесть ссылка на окружности, расположенных через равные промежутки. Остается выбрать три точки через одну и линейкой соединить их с центром круга, и вы получите поделенный натрое круг.
________
Окружность можно поделить на три части, если, используя циркуль, из точки пересечения прямой, проведенной через центр окружности O, сделать циркулем засечки B и C на линии окружности величиной, равной радиусу этой окружности.
Таким образом, будут найдены две искомые точки, а третья – это противоположная точка A, где пересекаются окружность и прямая.
Далее, если это необходимо, при помощи линейки и карандаша

можно вычертить встроенный треугольник.

_________
Для разметки на три части используем радиус окружности.

Переворачиваем циркуль наоборот концами. Иглу устанавливаем на
пересечение осевой линии с окружностью, а грифель в центр. очерчиваем
дугу, пересекающую окружность.

Места пересечения и будут вершинами треугольника.

Инструкция

Разбить окружность на четыре равные части очень просто, это тривиальная задача. Для этого нужно просто провести две перпендикулярные друг другу осевые линии. Точки на пересечении этих линий с окружность ю и ее на четыре части. Чаще возникает разделить окружность не на четыре, а на восемь равных частей. Для того, чтобы это сделать, нужно будет разделить дугу, которая составляет одну четверть окружности, на две равные части. Затем возьмите циркуль и разведите его на расстояние, которое на изображении обозначено цветом. Теперь осталось просто отложить это расстояние от каждой из полученных ранее четырех точек.

Для того чтобы разбить окружность на три равные части, разведите ножки на радиус окружности. После этого в любую точку пересечения осевых линий и окружности установите иглу циркуля. Проведите тонкой линией вспомогательную окружность . Три равные части точками пересечения и вспомогательной окружностей, а так же точкой, которая лежит на линии, вернее на ее противоположном конце.

А если нужно разделить окружность на шесть равных частей, то нужно проделать практически все то же самое. Отличие лишь в том, что эти необходимо повторить и для другой осевой линии. В этом случае получится сразу шесть точек на окружности, как показано на рисунке.

Очень часто возникает необходимость разделить окружность на пять равных частей. Это сделать тоже не сложно. Сначала нужно разделить на осевой линии радиус на две равные части. Именно в эту точку и нужно иглу циркуля. Грифель же необходимо отвести до точки пересечения окружности и перпендикулярной этому осевой линии. Наглядно это можно увидеть рисунке. На нем это расстояние изображено красным. Это расстояние откладывайте на окружности. Начинать нужно с осевой линии, а затем иглу переносить в новую получившуюся точку пересечения. Чтобы разбить окружность на десять частей повторите все вышеописанные действия зеркально.

Деление окружности на равные части, построение правильных многоугольников

Деление окружности на 4 и 8 равных частей

Концы взаимно перпендикулярных диаметров АС и BD (рис. 1) делят окружность с центром в точке О на 4 равные части. Соединив концы этих диаметров, можно получить квадрат A ВС D .

Если угол СОА между взаимно перпендикулярными диаметрами АЕ и С G (рис. 2) разделить пополам и провести взаимно перпендикулярные диаметры DH и BF , то их концы разделят окружность с центром в точке О на 8 равных частей. Соединив концы этих диаметров, можно получить правильный восьмиугольник ABCDEFGH .

Рис. 1 Рис. 2

Деление окружности на 3, 6 и 12 частей

Для деления окружности на 6 равных частей используют равенство сторон правильного шестиугольника радиусу описанной окружности. Если задана окружность с центром в точке О (рис. 3) и радиусом R , то из концов одного из ее диаметров (точек А и D ), как из центров, проводят дуги окружностей радиусом R . Точки пересечения этих дуг с заданной окружностью разделят ее на 6 равных частей. Последовательно соединив найденные точки, получают правильный шестиугольник ABCDEF .

Если окружность в центре с точкой О (рис.4) необходимо разделить на 3 равные части, то радиусом, равным радиусу этой окружности, следует провести дугу лишь из одного конца диаметра, например точки D . Точки В и С пересечения этой дуги с заданной окружностью, а так же точка А разделят последнюю на 3 равные части. Соединив точки А , В и С , можно получить равносторонний треугольник АВС .

Рис. 3 Рис. 4

Чтобы разделить окружность на 12 частей, деление окружности на 6 частей повторяют дважды (рис. 5), используя в качестве центров концы взаимно перпендикулярных диаметров: точки А и G , D и J . Точки пересечения проведенных дуг с заданной окружностью разделят ее на 12 частей. Соединив построенные точки, можно получить правильный двенадцати угольник.

Рис. 5

Деление окружности на 5 частей

О (рис. 6) на 5 частей, поступают следующим образом. Один из радиусов окружности, например ОМ , делят пополам описанным ранее способом. Из середины отрезка ОМ точка N радиусом R 1 , равным отрезку А N , проводят дугу окружности и отмечают точку Р пересечения этой дуги с диаметром, которому принадлежит радиус ОМ . Отрезок АР равен стороне вписанного в окружность правильного пятиугольника. Поэтому из конца А диаметра, перпендикулярного к ОМ , радиусом R 2 , равным отрезку АР , проводят дугу окружности. Точки В и Е пересечения этой дуги с заданной окружностью позволяют отметить две вершины пятиугольника.

Еще две вершины ( С и D ) являются точками пересечения дуг окружностей радиусом R 2 с центрами в точках В и Е с заданной окружностью с центром в точки О . Вершины правильного пятиугольника ABCDE делят заданную окружность на 5 равных частей.

Рис. 6

Деление окружности на 7 частей

Чтобы разделить окружность с центром в точке О (рис. 6) на 7 частей, необходимо из точки 1 провести вспомогательную дугу радиусом R , равным радиусу данной окружности, которая пересечет окружность в точке М . Из точки N опускаю перпендикуляр на горизонтальную осевую линию. Из точки А радиусом, равным радиусу MN , делают по окружности 7 засечек и получают семь искомых точек, соединив которые получают правильный семиугольник ABCDEFG .

Рис. 7

Деление окружности на произвольное число равных частей

Если ни в одном из рассмотренных ранее вариантов не удовлетворяет условию поставленной задачи, то используют прием, позволяющий разделить окружность на произвольное число равных частей и построить соответственно вписанные в нее правильные многоугольники с произвольным числом сторон.

Рассмотрим такое построение на примере деления окружности с центром в точке О (рис. 8а) на 7 равных частей. Сначала необходимо провести два взаимно перпендикулярных диаметра, один из которых, например проходящий через точку А , следует разделить на 7 равных частей, ограниченными точками 1…7. Из точки А , как из центра, радиусом R равным диаметру заданной окружности, надо провести дугу, пересечение которой с продолжением второго диаметра определит точки Р 1 и Р 2 . Затем через точки Р 1 и Р 2 (рис.8б), и четные точки, полученные при делении диаметра А7 (точки 2. 4 и 6), проводят прямые. Точки В , С , D и Е , F , G пересечения этих прямых с заданной окружностью и точка А делят окружность с центром О на 7 равных частей. Последовательно соединив построенные точки можно изобразить вписанный в окружность правильный семиугольник.

Рис. 8

С помощью циркуля и линейки можно разделить окружность не на любое число частей. Математики доказали, что на 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17,…, 257,…частей разделить можно, на 7, 9, 11, 13, 14, … частей нельзя.

К сожалению, нет единого способа деления. Приведем самые главные.

1) Деление окружности на 6, 3, 12, 24, …, 3×2 k (k=0,1,2,3,…) равных частей.

Начинаем с деления окружности на 6 частей . Для этого тем же раствором циркуля, которым проводилась окружность, из любой точки окружности, как из центра, надо провести окружность. Затем повторить процедуру, взяв в качестве центра точку пересечения начальной и новой окружностей.

Чтобы поделить окружность на 3 части, надо поделить ее на 6 частей и взять точки через одну (рис. 5а). Чтобы поделить окружность на 12 частей, надо поделить ее на 6 частей и каждую дугу поделить пополам, далее процесс деления дуг пополам можно продолжать неограниченно.

Длина перпендикуляра, опущенного из центра окружности на сторону шестиугольника, является неплохим приближением для длины стороны семиугольника, вписанного в окружность (на рисунке 5а показан штриховкой). Длина перпендикуляра ≈0,866R, длина стороны семиугольника ≈0,868R – точность ≈2%.

2) Деление окружности на 2, 4, 8, 16,…, 2 k (k=1,2,3,…) равные части.

Разделить окружность на 2 части с помощью линейки можно, проведя прямую через центр окружности. Но можно от любой точки окружности 3 раза отложить радиус круга. Начальная и конечная точки делят окружность пополам (через них можно провести диаметр - рис. 5а). Чтобы поделить окружность на 4 части, надо поделить пополам полученные дуги. Последовательное выполнение деления полученных дуг пополам обеспечивает деление окружности на 8, 16 и т.д. частей.

3) Деление окружности на 5 частей.

Принятый в черчении способ построения использует соотношение между стороной правильного десятиугольника (а 10 )и правильного пятиугольника (а 5 )- a 5 2 =R 2 +a 10 2 . Выполняется построение следующим образом. Проведем 2 перпендикулярные прямые через центр окружности О. А и В – точки их пересечения с окружностью. Из точки А, как из центра, проведем окружность того же радиуса (найдем середину отрезка АО – точку С). Из середины отрезка АО точки С проведем еще одну окружность радиуса СВ. Отрезок ВЕ – равен стороне пятиугольника, ОЕ – десятиугольника (рис. 5б).

Можно делить окружность на 5 и 10 частей способом, изображенным на рисунке 5в. Отрезок ВС - сторона пятиугольника, АС - десятиугольника. О замечательных свойствах пятиугольника и десятиугольника и о том, почему верен способ построения, приведенный на рисунке 5в, мы расскажем в следующей главе.




МедресеКукельдаш (XVIв., Ташкент)

Рисунок 5г демонстрирует прием приближенного геомет-рического решения задачи о делении окружности на любое число частей. Пусть, например, требуется разделить данную окружность на 7 равных частей. Построим на диаметре окружности АВ равносторонний треугольник АВС и разделим диаметр АВ точкой D в отношении AD:AB=2:7 (в общем случае 2:n). Для этого надо провести вспомогательную прямую, на ней отложить n+2 одинаковых отрезка, крайнюю точку соединить с точкой В и через вторую точку провести прямую, параллельную прямой BF. Проведем прямую DC до пересечения с окружностью. Дуга АЕ будет составлять 7-ую часть окружности (в общем случае n-ю). Этот метод при n<11 дает погрешность не более 1%.

Алгоритмы деления окружности на равные части можно использовать, например, для построения опорных точек спиралей - спирали Архимеда, названной так в честь великого древнегреческого ученого Архимеда (III в. до н.э.), впервые изучившего эту линию, и логарифмической спирали.

просмотров