Хлорная коррозия труб в котлах. Коррозия водогрейных котлов и теплообменного оборудования

Хлорная коррозия труб в котлах. Коррозия водогрейных котлов и теплообменного оборудования

Эта коррозия по размеру и интенсивности часто бывает более значительной и опасной, чем коррозия котлов во время их работы.

При оставлении воды в системах в зависимости от ее температуры и доступа воздуха могут встречаться самые разнообразные случаи проявления стояночной коррозии. Следует прежде всего отметить крайнюю нежелательность наличия воды в трубах агрегатов при нахождении их в резерве.

Если вода по тем или иным причинам остается в системе, то может наблюдаться сильная стояночная коррозия в паровом и особенно в водяном пространстве емкости (преимущественно по ватерлинии) при температуре воды 60—70°С. Поэтому на практике довольно часто наблюдается различная по интенсивности стояночная коррозия, несмотря на одинаковые режимы останова системы и качество содержащейся в них воды; аппараты со значительной тепловой аккумуляцией подвергаются более сильной коррозии, чем аппараты, имеющие размеры топки и поверхность нагрева, так как котловая вода в них быстрее охлаждается; температура ее становится ниже 60—70°С.

При температуре воды выше 85—90°С (например, при кратковременных остановах аппаратов) общая коррозия снижается, причем коррозия металла парового пространства, в котором наблюдается в этом случае повышенная конденсация паров, может превышать коррозию металла водяного пространства. Стояночная коррозия в паровом пространстве во всех случаях более равномерная, чем в водяном пространстве котла.

Развитию стояночной коррозии сильно способствует скапливающийся на поверхностях котла шлам, который обычно удерживает влагу. В связи с этим значительные коррозионные раковины часто обнаруживаются в агрегатах и трубах вдоль нижней образующей и на их концах, т. е. на участках наибольшего скопления шлама.

Способы консервации оборудования, находящегося в резерве

Для консервации оборудования могут быть применены следующие способы:

а) высушивание — удаление из агрегатов воды и влаги;

б) заполнение их растворами едкого натра, фосфата, силиката, нитрита натрия, гидразина;

в) заполнение технологической системы азотом.

Способ консервации следует выбирать в зависимости от характера и длительности простоя, а также от типа и конструктивных особенностей оборудования.

Простои оборудования по продолжительности можно разделить на две группы: кратковременные—не более 3 сут и длительные — более 3 сут.

Различают два вида кратковременных простоев:

а) плановые, связанные с выводом в резерв на выходные дни в связи с падением нагрузки или выводом в резерв на ночное время;

б) вынужденные — из-за выхода из строя труб или повреждений других узлов оборудования, для устранения которых не требуется более длительный останов.

В зависимости от цели длительные простои можно разделить на следующие группы: а) вывод оборудования в резерв; б) текущие ремонты; в) капитальные ремонты.

При кратковременных простоях оборудования необходимо использовать консервацию путем заполнения деаэрированной водой с поддержанием избыточного давления или газовый (азотный) способ. Если необходим аварийный останов, то единственно приемлемый способ — консервация азотом.

При выводе системы в резерв или длительном простое без выполнения ремонтных работ консервацию целесообразно вести путем заполнения раствором нитрита или силиката натрия. В этих случаях можно использовать и азотную консервацию, обязательно принимая меры для создания плотности системы с целью предотвращения чрезмерного расхода газа и непроизводительной работы азотной установки, а также создания безопасных условий при обслуживании оборудования.

Способы консервации путем создания избыточного давления, заполнения азотом можно использовать независимо от конструктивных особенностей поверхностей нагрева оборудования.

Для предотвращения стояночной коррозии металла во время капитального и текущего ремонтов применимы только способы консервации, позволяющие создать на поверхности металла защитную пленку, сохраняющую свойства в течение не менее 1—2 мес после слива консервирующего раствора, поскольку опорожнение и разгерметизация системы неизбежны. Срок действия защитной пленки на поверхности металла после обработки ее нитритом натрия может достигать 3 мес.

Способы консервации с использованием воды и растворов реагентов практически неприемлемы для защиты от стояночной коррозии промежуточных пароперегревателей котлов из-за трудностей, связанных с их заполнением и последующей отмывкой.

Способы консервации водогрейных и паровых котлов низкого давления, а также другого оборудования замкнутых технологических контуров тепло- и водоснабжения во многом отличаются от применяемых в настоящее время методов предупреждения стояночной коррозии на ТЭС. Ниже описываются основные способы предупреждения коррозии в режиме простаивания оборудования аппаратов подобных циркуляционных систем с учетом специфики их работы.

Упрощенные способы консервации

Эти способы целесообразно применять для мелких котлов. Они заключаются в полном удалении воды из котлов и размещении в них влагопоглотителей: прокаленного хлористого кальция, негашеной извести, силикагеля из расчета 1—2 кг на 1 м 3 объема.

Этот способ консервации пригоден при температурах помещения ниже и выше нуля. В помещениях, отапливаемых в зимнее время, может быть реализован один из контактных способов консервации. Он сводится к заполнению всего внутреннего объема агрегата щелочным раствором (NaOH, Na 3 P0 4 и др.), обеспечивающим полную устойчивость защитной пленки на поверхности металла даже при насыщении жидкости кислородом.

Обычно применяют растворы, содержащие от 1,5— 2 до 10 кг/м 3 NaOH или 5—20 кг/м 3 Na 3 P0 4 в зависимости от содержания нейтральный солей в исходной воде. Меньшие значения относятся к конденсату, большие — к воде, содержащей до 3000 мг/л нейтральных солей.

Коррозию можно предупредить также способом избыточного давления, при котором давление пара в остановленном агрегате постоянно поддерживается на уровне выше атмосферного давления, а температура воды остается выше 100°С, чем предотвращается доступ основного коррозионного агента — кислорода.

Важное условие эффективности и экономичности любого способа защиты — максимально возможная герметичность паро-водяной арматуры во избежание слишком быстрого снижения давления, потерь защитного раствора (или газа) или попадания влаги. Кроме того, во многих случаях полезна предварительная очистка поверхностей от различных отложений (солей, шлама, накипи).

При осуществлении различных способов защиты от стояночной коррозии необходимо иметь в виду следующее.

1. При всех видах консервации необходимо предварительное удаление (промывка) отложений легкорастворимых солей (см. выше) во избежание усиления стояночной коррозии на отдельных участках защищаемого агрегата. Обязательным является осуществление этого мероприятия при контактной консервации, иначе возможна интенсивная местная коррозия.

2. По аналогичным соображениям желательно удаление перед длительной консервацией всех видов нерастворимых отложений (шлама, накипи, оксидов железа).

3. При ненадежности арматуры необходимо отключение резервного оборудования от работающих агрегатов с помощью заглушек.

Просачивание пара и воды менее опасно при контактной консервации, но недопустимо при сухом и газовом методах защиты.

Выбор влагопоглотителей определяется сравнительной доступностью реагента и желательностью получения максимально возможной удельной влагоемкости. Наилучший влагопоглотитель — зерненый хлористый кальций. Негашеная известь значительно хуже хлористого кальция не только вследствие меньшей влагоемкости, но и быстрой потери ее активности. Известь поглощает из воздуха не только влагу, но и углекислоту, в результате чего она покрывается слоем углекислого кальция, препятствующего дальнейшему поглощению влаги.



Владельцы патента RU 2503747:

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к теплоэнергетике и может быть использовано для защиты от накипи нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе текущей эксплуатации.

УРОВЕНЬ ТЕХНИКИ

Эксплуатация паровых котлов связана с одновременным воздействием высоких температур, давления, механических напряжений и агрессивной среды, которой является котловая вода. Котловая вода и металл поверхностей нагрева котла представляют собой отдельные фазы сложной системы, которая образуется при их контакте. Итогом взаимодействия этих фаз являются поверхностные процессы, возникающие на границе их раздела. В результате этого в металле поверхностей нагрева возникают явления коррозии и образования накипи, что приводит к изменению структуры и механических свойств металла, и что способствует развитию различных повреждений. Поскольку теплопроводность накипи в пятьдесят раз ниже, чем у железа нагревательных труб, то имеют место потери тепловой энергии при теплопередаче - при толщине накипи 1 мм от 7 до 12%, а при 3 мм - 25%. Сильное образование накипи в системе парового котла непрерывного действия часто приводит к остановке производства на несколько дней в году для удаления накипи.

Качество питательной и, следовательно, котловой воды определяется присутствием примесей, которые могут вызывать различные виды коррозии металла внутренних поверхностей нагрева, образования первичной накипи на них, а также шлама, как источника образования вторичной накипи. Кроме того, качество котловой воды зависит и от свойств веществ, образующихся в результате поверхностных явлений при транспортировке воды, и конденсата по трубопроводам, в процессах водообработки. Удаление примесей из питательной воды является одним из способов предотвращения образования накипи и коррозии и осуществляется методами предварительной (докотловой) обработки воды, которые направлены на максимальное удаление примесей, находящихся в исходной воде. Однако применяемые методы не позволяют полностью исключить содержание примесей в воде, что связано не только с трудностями технического характера, но и экономической целесообразностью применения методов докотловой обработки воды. Кроме того, поскольку водоподготовка представляет сложную техническую систему, она является избыточной для котлов малой и средней производительности.

Известные методы удаления уже образовавшихся отложений используют в основном механические и химические способы очистки. Недостатком этих способов является то, что они не могут производиться в ходе эксплуатации котлов. Кроме того, способы химической очистки часто требуют использования дорогостоящих химических веществ.

Известны также способы предотвращения образования накипи и коррозии, осуществляемые в процессе работы котлов.

В патенте US 1877389 предложен способ удаления накипи и предотвращения ее образования в водогрейных и паровых котлах. В этом способе поверхность котла представляет собой катод, а анод размещен внутри трубопровода. Способ заключается в пропускании постоянного или переменного тока через систему. Авторы отмечают, что механизм действия способа заключается в том, что под действием электрического тока на поверхности котла образуются пузырьки газа, которые приводят к отслоению существующей накипи и препятствуют образованию новой. Недостатком указанного способа является необходимость постоянно поддерживать протекание электрического тока в системе.

В патенте US 5667677 предложен способ обработки жидкости, в частности воды, в трубопроводе с целью замедления образования накипи. Указанный способ основан на создании в трубах электромагнитного поля, которое отталкивает растворенные в воде ионы кальция, магния от стенок труб и оборудования, не давая им кристаллизоваться в виде накипи, что позволяет эксплуатировать котлы, бойлеры, теплообменники, системы охлаждения на жесткой воде. Недостатком указанного способа является дороговизна и сложность используемого оборудования.

В заявке WO 2004016833 предложен способ уменьшения образования накипи на металлической поверхности, подвергающейся воздействию пересыщенного щелочного водного раствора, из которого способна образовываться накипь после периода воздействия, включающий приложение катодного потенциала к указанной поверхности.

Указанный способ может использоваться в различных технологических процессах, в которых металл находится в контакте с водным раствором, в частности, в теплообменниках. Недостатком указанного способа является то, что он не обеспечивает защиту металлической поверхности от коррозии после снятия катодного потенциала.

Таким образом, в настоящее время существует потребность в разработке улучшенного способа предотвращения образования накипи нагревательных труб, водогрейных и паровых котлов, который был бы экономичным и высокоэффективным и обеспечивал антикоррозионную защиту поверхности в течение длительного промежутка времени после воздействия.

В настоящем изобретении указанная задача решена с помощью способа, согласно которому на металлической поверхности создается токоотводящий электрический потенциал, достаточный для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов к металлической поверхности.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Задачей настоящего изобретения является обеспечение улучшенного способа предотвращения образования накипи нагревательных труб водогрейных и паровых котлов.

Другой задачей настоящего изобретения является обеспечение возможности исключения или значительного уменьшения необходимости удаления накипи в процессе эксплуатации водогрейных и паровых котлов.

Еще одной задачей настоящего изобретения является исключение необходимости использования расходных реагентов для предотвращения образования накипи и коррозии нагревательных труб водогрейных и паровых котлов.

Еще одной задачей настоящего изобретения является обеспечение возможности начала работы по предотвращению образования накипи и коррозии нагревательных труб водогрейных и паровых котлов на загрязненных трубах котла.

Настоящее изобретение относится к способу предотвращения образования накипи и коррозии на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь. Указанный способ заключается в приложении к указанной металлической поверхности токоотводящего электрического потенциала, достаточного для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов к металлической поверхности.

Согласно некоторым частным вариантам реализации заявленного способа токоотводящий потенциал устанавливают в пределах 61-150 В. Согласно некоторым частным вариантам реализации заявленного способа вышеуказанный железосодержащий сплав представляет собой сталь. В некоторых вариантах реализации металлическая поверхность представляет собой внутреннюю поверхность нагревательных труб водогрейного или парового котла.

Раскрытый в данном описании способ имеет следующие преимущества. Одним преимуществом способа является уменьшенное образование накипи. Другим преимуществом настоящего изобретения является возможность использования однажды закупленного работающего электрофизического аппарата без необходимости использования расходных синтетических реагентов. Еще одним преимуществом является возможность начала работы на загрязненных трубках котла.

Техническим результатом настоящего изобретения, таким образом, является повышение эффективности работы водогрейных и паровых котлов, повышение производительности, увеличение эффективности теплопередачи, снижение расходов топлива на нагрев котла, экономия энергии и пр.

Другие технические результаты и преимущества настоящего изобретения включают обеспечение возможности послойного разрушения и удаления уже образовавшейся накипи, а также предотвращения ее нового образования.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг.1 показан характер распределения отложений на внутренних поверхностях котла в результате применения способа согласно настоящему изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Способ согласно настоящему изобретению заключается в приложении к металлической поверхности, подверженной образованию накипи, токоотводящего электрического потенциала, достаточного для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов, образующих накипь, к металлической поверхности.

Термин «токоотводящий электрический потенциал» в том смысле, в каком он используется в данной заявке, означает переменный потенциал, нейтрализующий двойной электрический слой на границе металла и пароводяной среды, содержащей соли, приводящие к образованию накипи.

Как известно специалисту в данной области техники, носителями электрического заряда в металле, медленными по сравнению с основными носителями заряда -электронами, являются дислокации его кристаллической структуры, которые несут на себе электрический заряд и образуют дислокационные токи. Выходя на поверхность нагревательных труб котла, эти токи входят в состав двойного электрического слоя при образовании накипи. Токоотводящий, электрический, пульсирующий (то есть переменный) потенциал инициирует отведение электрического заряда дислокаций с поверхности металла на землю. В этом отношении он является токоотводящим дислокационные токи. В результате действия этого токоотводящего электрического потенциала двойной электрический слой разрушается, и накипь постепенно распадается и переходит в котельную воду в виде шлама, который удаляется из котла при периодических его продувках.

Таким образом, термин «токоотводящий потенциал» понятен для специалиста в данной области техники и, кроме того, известен из уровня техники (см., например, патент RU 2128804 С1).

В качестве устройства для создания токоотводящего электрического потенциала может, например, быть использовано устройство, описанное в RU 2100492 С1, которое включает в себя конвертер с частотным преобразователем и регулятором пульсирующего потенциала, а также регулятор формы импульсов. Подробное описание этого устройства дано в RU 2100492 С1. Также может быть использовано любое другое аналогичное устройство, как будет понятно специалисту в данной области техники.

Токоотводящий электрический потенциал согласно настоящему изобретению может быть приложен к любой части металлической поверхности, удаленной от основания котла. Место приложения определяется удобством и/или эффективностью применения заявленного способа. Специалист в данной области техники, используя информацию, раскрытую в настоящем описании, и используя стандартные методики испытаний, сможет определить оптимальное место приложения токоотводящего электрического потенциала.

В некоторых вариантах реализации настоящего изобретения токоотводящий электрический потенциал является переменным.

Токоотводящий электрический потенциал согласно настоящему изобретению может быть приложен в течение различных периодов времени. Время приложения потенциала определяется характером и степенью загрязненности металлической поверхности, составом используемой воды, температурным режимом и особенностями работы теплотехнического устройства и другими факторами, известными специалистам в данной обрасти техники. Специалист в данной области техники, используя информацию, раскрытую в настоящем описании и используя стандартные методики испытаний, сможет определить оптимальное время приложения токоотводящего электрического потенциала, исходя из поставленных целей, условий и состояния теплотехнического устройства.

Величина токоотводящего потенциала, требуемая для нейтрализации электростатической составляющей силы адгезии, может быть определена специалистом в области коллоидной химии на основании сведений известных из уровня техники, например из книги Дерягин Б.В., Чураев Н.В., Муллер В.М. «Поверхностные силы», Москва, "Наука", 1985. Согласно некоторым вариантам реализации величина токоотводящего электрического потенциала находится в диапазоне от 10 В до 200 В, более предпочтительно от 60 В до 150 В, еще более предпочтительно от 61 В до 150 В. Значения токоотводящего электрического потенциала в диапазоне от 61 В до 150 В приводят к разряжению двойного электрического слоя, являющегося основой электростатической составляющей сил адгезии в накипи и, как следствие, разрушению накипи. Значения токоотводящего потенциала ниже 61 В являются недостаточными для разрушения накипи, а при значениях токоотводящего потенциала выше 150 В вероятно начало нежелательного электроэрозионного разрушения металла нагревательных трубок.

Металлическая поверхность, к которой может быть применен способ согласно настоящему изобретению, может быть частью следующих теплотехнических устройств: нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе текущей эксплуатации. Данный список является иллюстративным и не ограничивает список устройств, к которым может быть применен способ согласно настоящему изобретению.

В некоторых вариантах реализации железосодержащий сплав, из которого выполнена металлическая поверхность, к которой может быть применен способ согласно к настоящему изобретению, может представляет собой сталь или другой железосодержащий материал, такой как чугун, ковар, фехраль, трансформаторную сталь, альсифер, магнико, альнико, хромистую сталь, инвар и др. Данный список является иллюстративным и не ограничивает список железосодержащих сплавов, к которым может быть применен способ согласно настоящему изобретению. Специалист в данной области техники на основании сведений, известных из уровня техники, сможет такие железосодержащие сплавы, которые могут быть использованы согласно настоящему изобретению.

Водная среда, из которой способна образовываться накипь, согласно некоторым вариантам реализации настоящего изобретения, представляет собой водопроводную воду. Водная среда также может представлять собой воду, содержащую растворенные соединения металлов. Растворенные соединения металлов могут представлять собой соединения железа и/или щелочно-земельных металлов. Водная среда также может представлять собой водную суспензию коллоидных частиц соединений железа и/или щелочно-земельных металлов.

Способ согласно настоящему изобретению удаляет ранее образовавшиеся отложения и служит безреагентным средством очистки внутренних поверхностей в ходе эксплуатации теплотехнического устройства, обеспечивая в дальнейшем безнакипный режим его работы. При этом размеры зоны, в пределах которой достигается предотвращение образования накипи и коррозии, существенно превышает размеры зоны эффективного разрушения накипи.

Способ согласно настоящему изобретению имеет следующие преимущества:

Не требует применения реагентов, т.е. экологически безопасен;

Прост в осуществлении, не требует специальных устройств;

Позволяет повысить коэффициент теплопередачи и повысить эффективность работы котлов, что существенно сказывается на экономических показателях его работы;

Может использоваться как дополнение к применяемым методам докотловой обработки воды, так и отдельно;

Позволяет отказаться от процессов умягчения и деаэрации воды, что во многом упрощает технологическую схему котельных и дает возможность значительно снизить затраты при строительстве и эксплуатации.

Возможными объектами способа могут быть водогрейные котлы, котлы-утилизаторы, закрытые системы теплоснабжения, установки по термическому опреснению морской воды, паропреобразовательные установки и пр.

Отсутствие коррозионных разрушений, накипеобразования на внутренних поверхностях открывает возможность для разработки принципиально новых конструктивных и компоновочных решений паровых котлов малой и средней мощности. Это позволит, за счет интенсификации тепловых процессов, добиться существенного уменьшения массы и габаритов паровых котлов. Обеспечить заданный температурный уровень поверхностей нагрева и, следовательно, уменьшить расход топлива, объем дымовых газов и сократить их выбросы в атмосферу.

ПРИМЕР РЕАЛИЗАЦИИ

Способ, заявленный в настоящем изобретении, был испытан на котельных заводах «Адмиралтейские верфи» и «Красный химик». Было показано, что способ согласно настоящему изобретению эффективно очищает внутренние поверхности котлоагрегатов от отложений. В ходе этих работ была получена экономия условного топлива 3-10%, при этом разброс значений экономии связан с различной степенью загрязненности внутренних поверхностей котлоагрегатов. Целью работы являлась оценка эффективности заявленного способа для обеспечения безреагентного, безнакипного режима работы паровых котлоагрегатов средней мощности в условиях качественной водоподготовки, соблюдения водно-химического режима и высокого профессионального уровня эксплуатации оборудования.

Испытание способа, заявленного в настоящем изобретении, проводилось на паровом котлоагрегате №3 ДКВр 20/13 4-ой Красносельской котельной Юго-Западного филиала ГУП «ТЭК СПб». Эксплуатация котлоагрегата проводилась в строгом соответствии с требованиями нормативных документов. На котле установлены все необходимые средства контроля параметров его работы (давления и расхода вырабатываемого пара, температуры и расхода питательной воды, давления дутьевого воздуха и топлива на горелках, разряжения в основных сечениях газового тракта котлоагрегата). Паропроизводительность котла поддерживалась на уровне 18 т/час, давление пара в барабане котла - 8,1…8,3 кг/см 2 . Экономайзер работал в теплофикационном режиме. В качестве исходной воды использовалась вода городского водопровода, которая соответствовала требованиям ГОСТ 2874-82 «Вода питьевая». Необходимо отметить, что количество соединений железа на вводе в указанную котельную, как правило, превышает нормативные требования (0,3 мг/л) и составляет 0,3-0,5 мг/л, что приводит к интенсивному зарастанию внутренних поверхностей железистыми соединениями.

Оценка эффективности способа производилась по состоянию внутренних поверхностей котлоагрегата.

Оценка влияния способа согласно настоящему изобретению на состояние внутренних поверхностей нагрева котлоагрегата.

До начала испытаний был произведен внутренний осмотр котлоагрегата и зафиксировано исходное состояние внутренних поверхностей. Предварительный осмотр котла был произведен в начале отопительного сезона, через месяц после его химической очистки. В результате осмотра выявлено: на поверхности барабанов сплошные твердые отложения темно-коричневого цвета, обладающие парамагнитными свойствами и состоящие, предположительно, из окислов железа. Толщина отложений составляла до 0,4 мм визуально. В видимой части кипятильных труб, преимущественно на стороне обращенной к топке, обнаружены не сплошные твердые отложения (до пяти пятен на 100 мм длины трубы с размером от 2 до 15 мм и толщиной до 0,5 мм визуально).

Устройство для создания токоотводящего потенциала, описанное в RU 2100492 С1, было присоединено в точке (1) к лючку (2) верхнего барабана с тыльной стороны котла (см. Фиг.1). Токоотводящий электрический потенциал был равен 100 В. Токоотводящий электрический потенциал поддерживался непрерывно в течение 1,5 месяцев. По окончании этого периода было произведено вскрытие котлоагрегата. В результате внутреннего осмотра котлоагрегата было установлено практически полное отсутствие отложений (не более 0,1 мм визуально) на поверхности (3) верхнего и нижнего барабанов в пределах 2-2,5 метров (зона (4)) от лючков барабанов (точки присоединения устройства для создания токоотводящего потенциала (1)). На удалении 2,5-3,0 м (зона (5)) от лючков отложения (6) сохранились в виде отдельных бугорков (пятен) толщиной до 0,3 мм (см. Фиг.1). Далее, по мере продвижения к фронту, (на удалении 3,0-3,5 м от лючков) начинаются сплошные отложения (7) до 0,4 мм визуально, т.е. на этом удалении от точки подключения устройства эффект способа очистки согласно настоящего изобретения практически не проявился. Токоотводящий электрический потенциал был равен 100 В. Токоотводящий электрический потенциал поддерживался непрерывно в течение 1,5 месяцев. По окончании этого периода было произведено вскрытие котлоагрегата. В результате внутреннего осмотра котлоагрегата было установлено практически полное отсутствие отложений (не более 0,1 мм визуально) на поверхности верхнего и нижнего барабанов в пределах 2-2,5 метров от лючков барабанов (точки присоединения устройства для создания токоотводящего потенциала). На удалении 2,5-3,0 м от лючков отложения сохранились в виде отдельных бугорков (пятен) толщиной до 0,3 мм (см. Фиг.1). Далее, по мере продвижения к фронту (на удалении 3,0-3,5 м от лючков), начинаются сплошные отложения до 0,4 мм визуально, т.е. на этом удалении от точки подключения устройства эффект способа очистки согласно настоящего изобретения практически не проявился.

В видимой части кипятильных труб, в пределах 3,5-4,0 м от лючков барабанов, наблюдалось практически полное отсутствие отложений. Далее, по мере продвижения к фронту, обнаружены не сплошные твердые отложения (до пяти пятен на 100 п.мм с размером от 2 до 15 мм и толщиной до 0,5 мм визуально).

В результате этого этапа испытаний был сделан вывод о том, что способ согласно настоящему изобретению без применения каких-либо реагентов позволяет эффективно разрушать ранее образовавшиеся отложения и обеспечивает безнакипный режим работы котлоагрегата.

На следующем этапе испытаний устройство для создания токоотводящего потенциала было присоединено в точке «В» и испытания продолжались в течение еще 30-45 суток.

Очередное вскрытие котлоагрегата было произведено после 3,5 месяцев непрерывной эксплуатации устройства.

Осмотр котлоагрегата показал, что оставшиеся ранее отложения полностью разрушены и лишь в незначительном количестве сохранились на нижних участках кипятильных труб.

Это позволило сделать следующие выводы:

Размеры зоны, в пределах которой обеспечивается безнакипный режим работы котлоагрегата, существенно превышают размеры зоны эффективного разрушения отложений, что позволяет последующим переносом точки подключения токоотводящего потенциала произвести очистку всей внутренней поверхности котлоагрегата и далее поддерживать безнакипный режим его работы;

Разрушение ранее образовавшихся отложений и предотвращение образования новых обеспечивается различными по характеру процессами.

По результатам осмотра было принято решение продолжить испытания до конца отопительного периода с целью окончательной очистки барабанов и кипятильных труб и выяснения надежности обеспечения безнакипного режима работы котла. Очередное вскрытие котлоагрегата было произведено через 210 суток.

Результаты внутреннего осмотра котла показали, что процесс очистки внутренних поверхностей котла в пределах верхнего и нижнего барабанов и кипятильных труб завершился практически полным удалением отложений. На всей поверхности металла образовалось тонкое плотное покрытие, имеющее черный цвет с синей побежалостью, толщина которого даже в увлажненном состоянии (практически сразу после вскрытия котла) не превышала 0,1 мм визуально.

Одновременно подтвердилась надежность обеспечения безнакипного режима работы котлоагрегата при применении способа настоящего изобретения.

Защитное действие магнетитовой пленки сохранялось до 2-х месяцев после отсоединения устройства, что вполне достаточно для обеспечения консервации котлоагрегата сухим способом при переводе его в резерв или на ремонт.

Хотя настоящее изобретение было описано в отношении различных конкретных примеров и вариантов реализации изобретения, следует понимать, что это изобретение не ограничено ими и что оно может быть реализовано на практике в рамках объема приведенной ниже формулы изобретения

1. Способ предотвращения образования накипи на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь, включающий приложение к указанной металлической поверхности токоотводящего электрического потенциала в диапазоне от 61 В до 150 В для нейтрализации электростатической составляющей силы адгезии между указанной металлической поверхностью и коллоидными частицами и ионами, образующими накипь.

Изобретение относится к теплоэнергетике и может быть использовано для защиты от накипи и коррозии нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе эксплуатации. Способ предотвращения образования накипи на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь, включает приложение к указанной металлической поверхности токоотводящего электрического потенциала в диапазоне от 61 В до 150 В для нейтрализации электростатической составляющей силы адгезии между указанной металлической поверхностью и коллоидными частицами и ионами, образующими накипь. Технический результат - повышение эффективности и производительности работы водогрейных и паровых котлов, увеличение эффективности теплопередачи, обеспечение послойного разрушения и удаления образовавшейся накипи, а также предотвращение ее нового образования. 2 з.п. ф-лы, 1 пр., 1 ил.

Впервые наружная коррозия экранных труб была обнаружена на двух электростанциях у котлов высоко­го давления ТП-230-2, работавших на угле марки АШ и сернистом мазуте и находившихся до того в эксплуата­ции около 4 лет. Наружная поверхность труб подверга­лась коррозионному разъеданию со стороны, обращен­ной в топку, в зоне максимальной температуры факела. 88

Разрушались преимущественно трубы средней (по ширине) части топки, непосредственно над зажигатель­ным. поясом. Широкие и относительно неглубокие корро­зионные язвы имели неправильную форму и часто смы­кались между собой, вследствие чего поврежденная поверхность труб была неровной, бугристой. В середине наиболее глубоких язв появились свищи, и через них начали вырываться струи воды и пара.

Характерным было полное отсутствие такой коррозии на экранных трубах котлов среднего давления этих элек­тростанций, хотя среднего давления находились там в эксплуатации значительно "более длительное время.

В последующие годы наружная коррозия экранных труб появилась и на других котлах высокого давления, работавших на твердом топливе. Зона коррозионных разрушений распространялась иногда на значительную высоту; в отдельные местах толщина стенок труб в ре­зультате коррозии уменьшалась до 2-3 мм. Было заме­чено также, что эта коррозия практически отсутствует в котлах высокого давления, работающих на мазуте.

Наружная коррозия экранных труб была обнаружена у котлов ТП-240-1 после 4 лет эксплуатации, работающих при давлении в барабанах 185 ат. В этих котлах сжи­гался подмосковный бурый уголь, имевший влажность около 30%; мазут сжигали только при растопке. У этих котлов коррозионные разрушения также возникали в зо­не наибольшей тепловой нагрузки экранных труб. Осо­бенность процесса коррозии заключалась в том, что тру­бы разрушались как со стороны, обращенной в топку, так и со стороны, обращенной к обмуровке (рис. 62).

Эти факты показывают, что коррозия экранных труб зависит прежде всего от температуры их поверхности. У котлов среднего давления вода испаряется при темпе­ратуре около 240° С; у котлов, рассчитанных на давле­ние 110 ат, расчетная температура кипения воды равна 317° С; в котлах ТП-240-1 вода кипит при температуре 358° С. Температура наружной поверхности экранных труб обычно превышает температуру кипения примерно на 30-40° С.

Можно. предположить, что интенсивная наружная коррозия металла начинается при повышении его тем­пературы до 350° С. У котлов, рассчитанных на давле­ние 110 ат, эта температура достигается лишь с огневой стороны труб, а у котлов, имеющих давление 185 ат, она соответствует температуре воды в трубах. Именно поэтому коррозия экранных труб со стороны обмуров­ки наблюдалась только у этих котлов.

Подробное изучение вопроса было произведено на котлах ТП-230-2, работавших на одной из упомянутых электростанций . Там отбирались пробы газов и горя-

Щих частиц из факела на расстоянии около 25 мм от экранных труб. Близ фронтового экрана в зоне интен­сивной наружной коррозии труб топочные газы почти не содержали свободного кислорода. Вблизи же заднего экрана, у которого наружная коррозия труб почти от­сутствовала, свободного кислорода в газах было значи­тельно больше. Кроме того, проверка показала, что в районе образования коррозии более 70% проб газов

Можно "предположить, что в присутствии избыточно­го кислорода сероводород сгорает и коррозии не про­исходит, Но при отсутствии избыточного кислорода се­роводород вступает в химическое соединение с металлом труб. При этом образуется сульфид железа FeS. Этот продукт коррозии действительно был найден в отложе­ниях на экранных трубах.

Наружной коррозии подвержена не только углеро­дистая сталь, но и хромомолибденовая. В частности, у котлов ТП-240-1 коррозия поражала экранные трубы, изготовленные из стали марки 15ХМ.

До сих пор отсутствуют проверенные мероприятия для полного предупреждения описанного вида коррозии. Некоторое уменьшение скорости разрушения. металла до­стигалось. после наладки процесса горения, в частности при увеличении избытка воздуха в топочных газах.

27. КОРРОЗИЯ ЭКРАНОВ ПРИ СВЕРХВЫСОКОМ ДАВЛЕНИИ

В этой книге вкратце рассказано об условиях работы металла паровых котлов современных электростанций. Но прогресс энергетики в СССР продолжается, и теперь вступает в строй большое число новых котлов, рассчи­танных на более высокие давления и температуры пара. В этих условиях большое значение имеет практический опыт эксплуатации нескольких котлов ТП-240-1, рабо­тающих с 1953-1955 гг. при давлении 175 ат (185 ат в барабане). Весьма ценны, >в частности, сведения о кор­розии их экранов.

Экраны этих котлов были подвержены коррозии как с наружной, так и с внутренней стороны. Их наружная коррозия описана в предыдущем параграфе этой главы, разрушение же внутренней поверхности труб не похоже ни на один из описанных выше видов коррозии металла

Разъедание происходило в основном с огневой стороны верхней части наклонных труб холодной воронки и сопровождалось появле­нием коррозионных раковин (рис. 63,а). В дальнейшем число таких раковин увеличивалось, и возникала сплошная полоса (иногда две параллельные. полосы) разъеденного металла (рис. 63,6). Характер­ным являлось также отсутствие коррозии в зоне сварных стыков.

Внутри труб имелся налет рыхлого шлама толщиной 0,1-0,2 мм, состоявшего в основном из окислов железа и меди. Увеличение кор­розионного разрушения металла не сопровождалось увеличением толщины слоя шлама, следовательно, коррозия под слоем шлама не была основной причиной разъедания внутренней поверхности экран­ных труб.

В котловой воде поддерживался режим чистофосфатной щелоч­ности. Фосфаты вводились в котел не.непрерывно, а периодически.

Большое значение имело то обстоятельство, что температура металла труб периодически резко.повышалась и иногда была выше 600° С (рис. 64). Зона наиболее частого и максимального повыше­ния температуры совпадала с зоной наибольшего разрушения ме­талла. Снижение давления в котле до 140-165 ат (т. е. до давле­ния, при котором работают новые серийные котлы) не изменяло характера временного повышения температуры труб, но сопровож­далось значительным снижением максимального значения этой тем­пературы. Причины такого периодического повышения температуры огневой стороны наклонных труб холодной. воронки еще подробно не изучены.

В настоящей книге рассматриваются конкретные во­просы, связанные с работой стальных деталей парового котла. Но для изучения этих сугубо практических вопро­сов необходимо знать общие сведения, касающиеся строения стали и ее " свойств. В схемах, показывающих строение металлов, атомы иногда изображают в виде соприкасающихся друг с дру­гом шаров (рис. 1). Такие схемы по­казывают расстановку атомов в ме­талле, но в них трудно наглядно пока­зать расположение атомов друг отно­сительно друга.

Эрозией называется постепенное разрушение поверх­ностного слоя металла под влиянием механического воз­действия. Наиболее распространенным видом эрозии стальных элементов - парового котла является их истира­ние твердыми частицами золы, движущейся вместе с ды­мовыми газами. При длительном истирании происходит постепенное уменьшение толщины стенок труб, а затем их деформация и разрыв под действием внутреннего давления.

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ НАУЧНО-ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ПРЕДУПРЕЖДЕНИЮ
НИЗКОТЕМПЕРАТУРНОЙ
КОРРОЗИИ ПОВЕРХНОСТЕЙ
НАГРЕВА И ГАЗОХОДОВ КОТЛОВ

РД 34.26.105-84

СОЮЗТЕХЭНЕРГО

Москва 1986

РАЗРАБОТАНО Всесоюзным дважды ордена Трудового Красного Знамени теплотехническим научно-исследовательским институтом имени Ф.Э. Дзержинского

ИСПОЛНИТЕЛИ Р.А. ПЕТРОСЯН, И.И. НАДЫРОВ

УТВЕРЖДЕНО Главным техническим управлением по эксплуатации энергосистем 22.04.84 г.

Заместитель начальника Д.Я. ШАМАРАКОВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРЕДУПРЕЖДЕНИЮ НИЗКОТЕМПЕРАТУРНОЙ КОРРОЗИИ ПОВЕРХНОСТЕЙ НАГРЕВА И ГАЗОХОДОВ КОТЛОВ

РД 34.26.105-84

Срок действия установлен
с 01.07.85 г.
до 01.07.2005 г.

Настоящие Методические указания распространяются на низкотемпературные поверхности нагрева паровых и водогрейных котлов (экономайзеры, газовые испарители, воздухоподогреватели различных типов и т.п.), а также на газовый тракт за воздухоподогревателями (газоходы, золоуловители, дымососы, дымовые трубы) и устанавливают методы защиты поверхностей нагрева от низкотемпературной коррозии.

Методические указания предназначены для тепловых электростанций, работающих на сернистых топливах, и организаций, проектирующих котельное оборудование.

1. Низкотемпературной коррозией называется коррозия хвостовых поверхностей нагрева, газоходов и дымовых труб котлов под действием конденсирующихся на них из дымовых газов паров серной кислоты.

2. Конденсация паров серной кислоты, объемное содержание которых в дымовых газах при сжигании сернистых топлив составляет лишь несколько тысячных долей процента, происходит при температурах, значительно (на 50 - 100 °С) превышающих температуру конденсации водяных паров.

4. Для предупреждения коррозии поверхностей нагрева в процессе эксплуатации температура их стенок должна превышать температуру точки росы дымовых газов при всех нагрузках котла.

Для поверхностей нагрева, охлаждаемых средой с высоким коэффициентом теплоотдачи (экономайзеры, газовые испарители и т.п.), температуры среды на входе в них должны превышать температуру точки росы примерно на 10 °С.

5. Для поверхностей нагрева водогрейных котлов при работе их на сернистом мазуте условия полного исключения низкотемпературной коррозии не могут быть реализованы. Для ее уменьшения необходимо обеспечить температуру воды на входе в котел, равную 105 - 110 °С. При использовании водогрейных котлов в качестве пиковых такой режим может быть обеспечен при полном использовании подогревателей сетевой воды. При использовании водогрейных котлов в основном режиме повышение температуры воды на входе в котел может быть достигнуто с помощью рециркуляции горячей воды.

В установках с применением схемы включения водогрейных котлов в теплосеть через водяные теплообменники условия снижения низкотемпературной коррозии поверхностей нагрева обеспечиваются в полной мере.

6. Для воздухоподогревателей паровых котлов полное исключение низкотемпературной коррозии обеспечивается при расчетной температуре стенки наиболее холодного участка, превышающей температуру точки росы при всех нагрузках котла на 5 - 10 °С (минимальное значение относится к минимальной нагрузке).

7. Расчет температуры стенки трубчатых (ТВП) и регенеративных (РВП) воздухоподогревателей выполняется по рекомендациям «Теплового расчета котельных агрегатов. Нормативный метод» (М.: Энергия, 1973).

8. При применении в трубчатых воздухоподогревателях в качестве первого (по воздуху) хода сменяемых холодных кубов или кубов из труб с кислостойким покрытием (эмалированные и т.п.), а также изготовленных из коррозионностойких материалов на условия полного исключения низкотемпературной коррозии проверяются следующие за ними (по воздуху) металлические кубы воздухоподогревателя. В этом случае выбор температуры стенки холодных металлических кубов сменяемых, а также коррозионностойких кубов, должен исключать интенсивное загрязнение труб, для чего их минимальная температура стенки при сжигании сернистых мазутов должна быть ниже точки росы дымовых газов не более чем на 30 - 40 °С. При сжигании твердых сернистых топлив минимальная температура стенки трубы по условиям предупреждения интенсивного ее загрязнения должна приниматься не менее 80 °С.

9. В РВП на условиях полного исключения низкотемпературной коррозии рассчитывается их горячая часть. Холодная часть РВП выполняется коррозионностойкой (эмалированная, керамическая, из низколегированной стали и т.п.) или сменяемой из плоских металлических листов толщиной 1,0 - 1,2 мм, изготовленных из малоуглеродистой стали. Условия предупреждения интенсивного загрязнения набивки соблюдаются при выполнении требований п. настоящего документа.

10. В качестве эмалированной применяется набивка из металлических листов толщиной 0,6 мм. Срок службы эмалированной набивки, изготовленной в соответствии с ТУ 34-38-10336-89, составляет 4 года.

В качестве керамической набивки могут применяться фарфоровые трубки, керамические блоки, или фарфоровые пластины с выступами.

Учитывая сокращение потребления мазута тепловыми электростанциями, целесообразно применять для холодной части РВП набивку из низколегированной стали 10ХНДП или 10ХСНД, коррозионная стойкость которой в 2 - 2,5 раза выше, чем у малоуглеродистой стали.

11. Для защиты воздухоподогревателей от низкотемпературной коррозии в пусковой период следует выполнить мероприятия, изложенные в «Руководящих указаниях по проектированию и эксплуатации энергетических калориферов с проволочным оребрением» (М.: СПО Союзтехэнерго, 1981).

Растопку котла на сернистом мазуте, следует проводить с предварительно включенной системой подогрева воздуха. Температура воздуха перед воздухоподогревателем в начальный период растопки должна быть как правило, 90 °С.

11а. Для защиты воздухоподогревателей от низкотемпературной («стояночной») коррозии на остановленном котле, уровень которой примерно вдвое выше скорости коррозии в период эксплуатации, перед остановкой котла следует провести тщательную очистку воздухоподогревателей от наружных отложений. При этом перед остановом котла температуру воздуха на входе в воздухоподогреватель рекомендуется поддерживать на уровне ее значения при номинальной нагрузке котла.

Очистка ТВП осуществляется дробью с плотностью ее подачи не менее 0,4 кг/м.с (п. настоящего документа).

Для твердых топлив с учетом значительной опасности коррозии золоуловителей температура уходящих газов должна выбираться выше точки росы дымовых газов на 15 - 20 °С.

Для сернистых мазутов температура уходящих газов должна превышать температуру точки росы при номинальной нагрузке котла примерно на 10 °С.

В зависимости от содержания серы в мазуте следует принимать расчетное значение температуры уходящих газов при номинальной нагрузке котла, указанное ниже:

Температура уходящих газов, ºС...... 140 150 160 165

При сжигании сернистого мазута с предельно малыми избытками воздуха (α ≤ 1,02) температура уходящих газов может приниматься более низкой с учетом результатов измерений точки росы. В среднем переход от малых избытков воздуха к предельно малым снижает температуру точки росы на 15 - 20 °С.

На условия обеспечения надежной работы дымовой трубы и предупреждения выпадения влаги на ее стенки влияет не только температура уходящих газов, но также и их расход. Работа трубы с режимами нагрузки существенно ниже проектных увеличивает вероятность низкотемпературной коррозии.

При сжигании природного газа температуру уходящих газов рекомендуется иметь не ниже 80 °С.

13. При снижении нагрузки котла в диапазоне 100 - 50 % от номинальной следует стремиться к стабилизации температуры уходящих газов, не допуская ее снижения более, чем на 10 °С от номинальной.

Наиболее экономичным способом стабилизации температуры уходящих газов является повышение температуры предварительного подогрева воздуха в калориферах по мере снижение нагрузки.

Минимально допустимые значения температур предварительного подогрева воздуха перед РВП принимается в соответствии с п. 4.3.28 «Правил технической эксплуатации электрических станций и сетей» (М.: Энергоатомиздат, 1989).

В тех случаях, когда оптимальные температуры уходящих газов не могут быть обеспечены из-за недостаточной поверхности нагрева РВП, должны приниматься значения температур предварительного подогрева воздуха, при которых температура уходящих газов не превысит значений, приведенных в п. настоящих Методических указаний.

16. Ввиду отсутствия надежных кислотостойких покрытий для защиты от низкотемпературной коррозии металлических газоходов надежная работа их может быть обеспечена тщательной изоляцией, обеспечивающей разность температур между дымовыми газами и стенкой не более 5 °С.

Применяемые в настоящее время изоляционные материалы и конструкции недостаточно надежны в длительной эксплуатации, поэтому необходимо вести периодический, не реже одного раза в год, контроль за их состоянием и при необходимости выполнять ремонтно-восстановительные работы.

17. При использовании в опытном порядке для защиты газоходов от низкотемпературной коррозии различных покрытий следует учитывать, что последние должны обеспечивать термостойкость и газоплотность при температурах, превышающих температуру уходящих газов не менее чем на 10 °С, стойкость к воздействию серной кислоты концентрации 50 - 80 % в интервале температур соответственно 60 - 150 °С и возможность их ремонта и восстановления.

18. Для низкотемпературных поверхностей, конструкционных элементов РВП и газоходов котлов целесообразно использование низколегированных сталей 10ХНДП и 10ХСНД, превосходящих по коррозионной стойкости углеродистую сталь в 2 - 2,5 раза.

Абсолютной коррозионной стойкостью обладают лишь весьма дефицитные и дорогие высоколегированные стали (например, сталь ЭИ943, содержащая до 25 % хрома и до 30 % никеля).

Приложение

1. Теоретически температура точки росы дымовых газов с заданным содержанием паров серной кислоты и воды может быть определена как температура кипения раствора серной кислоты такой концентрации, при которой над раствором имеется то же самое содержание паров воды и серной кислоты.

Измеренное значение температуры точки росы в зависимости от методики измерения может не совпадать с теоретическим. В данных рекомендациях за температуру точки росы дымовых газов принята температура поверхности стандартного стеклянного датчика с впаянными на расстоянии 7 мм один от другого платиновыми электродами длиной 7 мм, при которой сопротивление пленки росы между электродами в установившемся состоянии равно 107 Ом. В измерительной цепи электродов используется переменный ток низкого напряжения (6 - 12 В).

2. При сжигании сернистых мазутов с избытками воздуха 3 - 5 % температура точки росы дымовых газов зависит от содержания серы в топливе Sp (рис.).

При сжигании сернистых мазутов с предельно низкими избытками воздуха (α ≤ 1,02) температура точки росы дымовых газов должна приниматься по результатам специальных измерений. Условия перевода котлов в режим с α ≤ 1,02 изложены в «Руководящих указаниях по переводу котлов, работающих на сернистых топливах, в режим сжигания с предельно малыми избытками воздуха» (М.: СПО Союзтехэнерго, 1980).

3. При сжигании сернистых твердых топлив в пылевидном состоянии температура точки росы дымовых газов tp может быть подсчитана по приведенному содержанию в топливе серы и золы Sрпр , Арпр и температуре конденсации водяных паров tкон по формуле

где aун - доля золы в уносе (обычно принимается 0,85).

Рис. 1. Зависимость температуры точки росы дымовых газов от содержания серы в сжигаемом мазуте

Значение первого члена этой формулы при aун = 0,85 можно определить по рис. .

Рис. 2. Разности температур точки росы дымовых газов и конденсации водяных паров в них в зависимости от приведенных содержаний серы (Sрпр ) и золы (Арпр ) в топливе

4. При сжигании газообразных сернистых топлив точка росы дымовых газов может быть определена по рис. при условии, что содержание серы в газе рассчитывается как приведенное, то есть в процентах по массе на 4186,8 кДж/кг (1000 ккал/кг) теплоты сгорания газа.

Для газового топлива приведенное содержание серы в процентах по массе может быть определено по формуле

где m - число атомов серы в молекуле серосодержащего компонента;

q - объемный процент серы (серосодержащего компонента);

- теплота сгорания газа в кДж/м3 (ккал/нм3);

С - коэффициент, равный 4,187, если выражено в кДж/м3 и 1,0, если в ккал/м3.

5. Скорость коррозии сменяемой металлической набивки воздухоподогревателей при сжигании мазута зависит от температуры металла и степени коррозионной активности дымовых газов.

При сжигании сернистого мазута с избытком воздуха 3 - 5 % и обдувке поверхности паром скорость коррозии (с двух сторон в мм/год) набивки РВП ориентировочно может быть оценена по данным табл. .

Таблица 1

Скорость коррозии (мм/год) при температуре стенки, ºС

0,5Более 2 0,20

Св. 0,11 до 0,4 вкл.

Св. 0,41 до 1,0 вкл.

6. Для углей с высоким содержанием окиси кальция в золе температуры точки росы оказываются ниже вычисленных по п. настоящих Методических указаний. Для таких топлив рекомендуется использовать результаты непосредственных измерений.

Идентификация видов коррозии затруднена, и, следовательно, нередки ошибки при определении технологически и экономически оптимальных мер противодействия коррозии. Основные необходимые меры предпринимаются в соответствии с нормативными документами, где установлены пределы главных инициаторов коррозии.

ГОСТ 20995-75 «Котлы паровые стационарные давлением до 3,9 МПа. Показатели качества питательной воды и пара» нормирует показатели в питательной воде: прозрачность, то есть количество взвешенных примесей; общая жесткость, содержание соединений железа и меди - предотвращение накипеобразования и железо- и медноокисных отложений; значение рН - предотвращение щелочной и кислотной коррозии и также пенообразования в барабане котла; содержание кислорода - предотвращение кислородной коррозии; содержание нитритов - предотвращение нитритной коррозии; содержание нефтепродуктов - предотвращение пенообразования в барабане котла.

Значения норм определены ГОСТом в зависимости от давления в котле (следовательно, от температуры воды), от мощности локального теплового потока и от технологии водоподготовки.

При исследовании причин коррозии, прежде всего, необходимо проводить осмотр (где это доступно) мест разрушения металла, анализ условий работы котла в предаварийный период, анализ качества питательной воды, пара и отложений, анализ конструктивных особенностей котла.

При внешнем осмотре можно подозревать следующие виды коррозии.

Кислородная коррозия

: входные участки труб стальных экономайзеров; питательные трубопроводы при встрече с недостаточно обескислороженной (выше нормы) водой - «прорывы» кислорода при плохой деаэрации; подогреватели питательной воды; все влажные участки котла во время его остановки и непринятия мер по предотвращению поступления воздуха в котел, особенно в застойных участках, при дренировании воды, откуда трудно удалить конденсат пара или полностью залить водой, например вертикальные трубы пароперегревателей. Во время простоев коррозия усиливается (локализируется) в присутствии щелочи (менее 100 мг/л).

Кислородная коррозия редко (при содержании кислорода в воде, значительном превышающем норму, - 0,3 мг/л) проявляется в паросепарационных устройствах барабанов котлов и на стенке барабанов на границе уровня воды; в опускных трубах. В подъемных трубах коррозия не проявляется из-за деаэрирующего действия паровых пузырьков.

Вид и характер повреждения . Язвы различной глубины и диаметра, часто покрытые бугорками, верхняя корка которых - красноватые окислы железа (вероятно, гематит Fе 2 О 3). Свидетельство активной коррозии: под коркой бугорков - черный жидкий осадок, наверное, магнетит (Fе 3 О 4) в смеси с сульфатами и хлоридами. При затухшей коррозии под коркой - пустота, а дно язвы покрыто отложениями накипи и шлама.

При рН воды > 8,5 - язвы редкие, но более крупные и глубокие, при рН < 8,5 - встречаются чаще, но меньших размеров. Только вскрытие бугорков помогает интерпретировать бугорки не как поверхностные отложения, а как следствие коррозии.

При скорости воды более 2 м/с бугорки могут принять продолговатую форму в направлении движения струи.

. Магнетитные корки достаточно плотные и могли бы служить надежным препятствием для проникновения кислорода внутрь бугорков. Но они часто разрушаются в результате коррозионной усталости, когда циклично изменяется температура воды и металла: частые остановы и пуски котла, пульсирующее движение пароводяной смеси, расслоение пароводяной смеси на отдельные пробки пара и воды, следующие друг за другом.

Коррозия усиливается с ростом температуры (до 350 °С) и увеличением содержания хлоридов в котловой воде. Иногда коррозию усиливают продукты термического распада некоторых органических веществ питательной воды.

Рис. 1. Внешний вид кислородной коррозии

Щелочная (в более узком смысле - межкристаллитная) коррозия

Места коррозионного повреждения металла . Трубы в зонах теплового потока большой мощности (район горелок и напротив вытянутого факела) - 300-400 кВт/м 2 и где температура металла на 5-10 °С выше температуры кипения воды при данном давлении; наклонные и горизонтальные трубы, где слабая циркуляция воды; места под толстыми отложениями; зоны вблизи подкладных колец и в самих сварных швах, например, в местах приварки внутрибарабанных паросепарационных устройств; места около заклепок.

Вид и характер повреждения . Полусферические или эллиптические углубления, заполненные продуктами коррозии, часто включающие блестящие кристаллы магнетита (Fе 3 О 4). Большая часть углублений покрыта твердой коркой. На стороне труб, обращенных к топке, углубления могут соединяться, образуя так называемую коррозионную дорожку шириной 20-40 мм и длиной до 2-3 м.

Если корка недостаточно устойчива и плотна, то коррозия может привести - в условиях механического напряжения - к появлению трещин в металле, особенно около щелей: заклепки, вальцовочные соединения, места приварки паросепарационных устройств.

Причины коррозионного повреждения . При высоких температурах - более 200 °С - и большой концентрации едкого натра (NаОН) - 10 % и более - защитная пленка (корка) на металле разрушается:

4NаОН + Fе 3 О 4 = 2NаFеО 2 + Nа 2 FеО 2 + 2Н 2 О (1)

Промежуточный продукт NаFеО 2 подвергается гидролизу:

4NаFеО 2 + 2Н 2 О = 4NаОН + 2Fe 2 О 3 + 2Н 2 (2)

То есть в этой реакции (2) едкий натр восстанавливается, в реакциях (1), (2) не расходуется, а выступает в качестве катализатора.

Когда магнетит удален, то едкий натр и вода могут реагировать с железом непосредственно с выделением атомарного водорода:

2NаОН + Fе = Nа 2 FеО 2 + 2Н (3)

4Н 2 О + 3Fе = Fе 3 О 4 + 8Н (4)

Выделяющийся водород способен диффундировать внутрь металла и образовывать с карбидом железа метан (CH 4):

4Н + Fе 3 С = СН 4 + 3Fе (5)

Возможно также объединение атомарного водорода в молекулярный (Н + Н = Н 2).

Метан и молекулярный водород не могут проникать внутрь металла, они скапливаются на границах зерен и при наличии трещин расширяют и углубляют их. Кроме того, эти газы препятствуют образованию и уплотнению защитных пленок.

Концентрированный раствор едкого натра образуется в местах глубокого упаривания котловой воды: плотные накипные отложения солей (вид подшламовой коррозии); кризис пузырькового кипения, когда образуется устойчивая паровая пленка над металлом - там металл почти не повреждается, но по краям пленки, где идет активное испарение, едкий натр концентрируется; наличие щелей, где идет испарение, отличное от испарения во всем объеме воды: едкий натр испаряется хуже, чем вода, не размывается водой и накапливается. Действуя на металл, едкий натр образует на границах зерен щели, направленные внутрь металла (вид межкристаллитной коррозии - щелевая).

Межкристаллитная коррозия под влиянием щелочной котловой воды чаще всего концентрируется в барабане котла.


Рис. 3. Межкристаллитная коррозия: а - микроструктура металла до коррозии, б - микроструктура на стадии коррозии, образование трещин по границе зерен металла

Такое коррозионное воздействие на металл возможно только при одновременном наличии трех факторов:

  • местные растягивающие механические напряжения, близкие или несколько превышающие предел текучести, то есть 2,5 МН/мм 2 ;
  • неплотные сочленения деталей барабана (указаны выше), где может происходить глубокое упаривание котловой воды и где накапливающийся едкий натр растворяет защитную пленку оксидов железа (концентрация NаОН более 10 %, температура воды выше 200 °С и - особенно - ближе к 300 °С). Если котел эксплуатируется с давлением меньшим, чем паспортное (например, 0,6-0,7 МПа вместо 1,4 МПа), то вероятность этого вида коррозии уменьшается;
  • неблагоприятное сочетание веществ в котловой воде, в которой отсутствуют необходимые защитные концентрации ингибиторов этого вида коррозии. В качестве ингибиторов могут выступать натриевые соли: сульфаты, карбонаты, фосфаты, нитраты, сульфитцеллюлозный щелок.


Рис. 4. Внешний вид межкристаллитной коррозии

Коррозионные трещины не развиваются, если соблюдается отношение:

(Nа 2 SО 4 + Nа 2 СО 3 + Nа 3 РО 4 + NаNО 3)/(NaOH) ≥ 5, 3 (6)

где Nа 2 SО 4 , Nа 2 СО 3 , Nа 3 РО 4 , NаNO 3 , NaOH - содержание соответственно натрий сульфата, натрий карбоната, натрий фосфата, натрий нитрата и натрий гидроксида, мг/кг.

В изготавливаемых в настоящее время котлах по крайней мере одно из указанных условий возникновения коррозии отсутствует.

Наличие в котловой воде кремниевых соединений также может усиливать межкристаллитную коррозию.

NаСl в данных условиях - не ингибитор коррозии. Выше было показано: ионы хлора (Сl -) - ускорители коррозии, из-за большой подвижности и малых размеров они легко проникают через защитные окисные пленки и дают с железом хорошо растворимые соли (FеСl 2 , FеСl 3) вместо малорастворимых оксидов железа.

В воде котельных традиционно контролируют значения общей минерализации, а не содержание отдельных солей. Вероятно, по этой причине было введено нормирование не по указанному соотношению (6), а по значению относительной щелочности котловой воды:

Щ кв отн = Щ ов отн = Щ ов 40 100/S ов ≤ 20, (7)

где Щ кв отн - относительная щелочность котловой воды, %; Щ ов отн - относительная щелочность обработанной (добавочной) воды, %; Щ ов - общая щелочность обработанной (добавочной) воды, ммоль/л; S ов - минерализация обработанной (добавочной) воды (в том числе - содержание хлоридов), мг/л.

Общая щелочность обработанной (добавочной) воды может быть принята равной, ммоль/л:

  • после натрий-катионирования - общей щелочности исходной воды;
  • после водород-натрий-катионирования параллельного - (0,3-0,4), или последовательного с «голодной» регенерацией водород-катионитного фильтра - (0,5-0,7);
  • после натрий-катионирования с подкислением и натрий-хлор-ионирования - (0,5-1,0);
  • после аммоний-натрий-катионирования - (0,5-0,7);
  • после известкования при 30-40 °С - (0,35-1,0);
  • после коагулирования - (Щ о исх - Д к), где Щ о исх - общая щелочность исходной воды, ммоль/л; Д к - доза коагулянта, ммоль/л;
  • после содоизвесткования при 30-40 °С - (1,0-1,5), а при 60-70 °С - (1,0-1,2).

Значения относительной щелочности котловой воды по нормам Ростехнадзора принимаются, %, не более:

  • для котлов с клепаными барабанами - 20;
  • для котлов со сварными барабанами и ввальцованными в них трубами - 50;
  • для котлов со сварными барабанами и приваренными к ним трубами - любое значение, не нормируется.


Рис. 4. Результат межкристаллитной коррозии

По нормам Ростехнадзора Щ кв отн - один из критериев безопасной работы котлов. Правильнее проверять критерий потенциальной щелочной агрессивности котловой воды, который не учитывает содержание иона хлора:

К щ = (S ов - [Сl - ])/40 Щ ов, (8)

где К щ - критерий потенциальной щелочной агрессивности котловой воды; S ов - минерализация обработанной (добавочной) воды (в том числе - содержание хлоридов), мг/л; Сl - - содержание хлоридов в обработанной (добавочной) воде, мг/л; Щ ов - общая щелочность обработанной (добавочной) воды, ммоль/л.

Значение К щ можно принимать:

  • для котлов с клепаными барабанами давлением более 0,8 МПа ≥ 5;
  • для котлов со сварными барабанами и ввальцованными в них трубами давлением более 1,4 МПа ≥ 2;
  • для котлов со сварными барабанами и приваренными к ним трубами, а также для котлов со сварными барабанами и ввальцованными в них трубами давлением до 1,4 МПа и котлов с клепаными барабанами давлением до 0,8 МПа - не нормировать.

Подшламовая коррозия

Под этим названием объединяют несколько разных видов коррозии (щелочная, кислородная и др.). Накопление в разных зонах котла рыхлых и пористых отложений, шлама вызывает коррозию металла под шламом. Главная причина: загрязнение питательной воды окислами железа.

Нитритная коррозия

. Экранные и кипятильные трубы котла на стороне, обращенной в топку.

Вид и характер повреждений . Редкие, резко ограниченные крупные язвы.

. При наличии в питательной воде нитритных ионов (NО - 2) более 20 мкг/л, температуре воды более 200 °С, нитриты служат катодными деполяризатрами электрохимической коррозии, восстанавливаясь до НNО 2 , NО, N 2 (см. выше).

Пароводяная коррозия

Места коррозионных повреждений металла . Выходная часть змеевиков пароперегревателей, паропроводы перегретого пара, горизонтальные и слабонаклонные парогенерирующие трубы на участках плохой циркуляции воды, иногда по верхней образующей выходных змеевиков кипящих водяных экономайзеров.

Вид и характер повреждений . Налеты плотных черных оксидов железа (Fе 3 О 4), прочно сцепленных с металлом. При колебаниях температуры сплошность налета (корки) нарушается, чешуйки отваливаются. Равномерное утончение металла с отдулинами, продольными трещинами, разрывами.

Может идентифицироваться в качестве подшламовой коррозии: в виде глубоких язв с нечетко отграниченными краями, чаще возле выступающих внутрь трубы сварных швов, где скапливается шлам.

Причины коррозионных повреждений :

  • омывающая среда - пар в пароперегревателях, паропроводах, паровые «подушки» под слоем шлама;
  • температура металла (сталь 20) более 450 °С, тепловой поток на участок металла - 450 кВт/м 2 ;
  • нарушение топочного режима: зашлаковывание горелок, повышенное загрязнение труб внутри и снаружи, неустойчивое (вибрационное) горение, удлинение факела по направлению к трубам экранов.

В результате: непосредственное химическое взаимодействие железа с водяным паром (см. выше).

Микробиологическая коррозия

Вызывается аэробными и анаэробными бактериями, появляется при температурах 20-80 °С.

Места повреждений металла . Трубы и емкости до котла с водой указанной температуры.

Вид и характер повреждений . Бугорки разных размеров: диаметр от нескольких миллиметров до нескольких сантиметров, редко - несколько десятков сантиметров. Бугорки покрыты плотными оксидами железа - продукт жизнедеятельности аэробных бактерий. Внутри - порошок и суспензия черного цвета (сульфид железа FеS) - продукт сульфатвосстанавливающих анаэробных бактерий, под черным образованием - круглые язвы.

Причины повреждений . В природной воде всегда присутствуют сульфаты железа, кислород и разные бактерии.

Железобактерии в присутствии кислорода образуют пленку оксидов железа, под ней анаэробные бактерии восстанавливают сульфаты до сульфида железа (FеS) и сероводорода (Н 2 S). В свою очередь, сероводород дает старт образованию сернистой (очень нестойкой) и серной кислот, и металл корродирует.

На коррозию котла этот вид оказывает косвенное влияние: поток воды при скорости 2-3 м/с срывает бугорки, уносит их содержимое в котел, увеличивая накопление шлама.

В редких случаях возможно протекание этой коррозии в самом котле, если во время длительной остановки котла в резерв он заполняется водой с температурой 50-60 о С, и температура поддерживается за счет случайных прорывов пара из соседних котлов.

«Хелатная» коррозия

Места коррозионного повреждения . Оборудование, в котором пар отделяется от воды: барабан котла, паросепарационные устройства в барабане и вне его, также - редко - в трубопроводах питательной воды и экономайзере.

Вид и характер повреждения . Поверхность металла - гладкая, но если среда движется с большой скоростью, то корродированная поверхность - негладкая, имеет подковообразные углубления и «хвосты», ориентированные в направлении движения. Поверхность покрыта тонкой матовой или черной блестящей пленкой. Явных отложений нет, нет и продуктов коррозии, потому что «хелат» (специально вводимые в котел органические соединения полиаминов) уже прореагировал.

В присутствии кислорода, что в нормально работающем котле случается редко, коррозированная поверхность - «взбодренная»: шероховатости, островки металла.

Причины коррозионного повреждения . Механизм действия «хелата» описан ранее («Промышленные и отопительные котельные и мини-ТЭЦ», 1(6)΄ 2011, с.40).

«Хелатная» коррозия возникает при передозировке «хелата», но и при нормальной дозе возможна, так как «хелат» концентрируется в зонах, где идет интенсивное испарение воды: пузырьковое кипение заменяется пленчатым. В паросепарационных устройствах бывают случаи особенно разрушительного действия «хелатной» коррозии из-за больших турбулентных скоростей воды и пароводяной смеси.

Все описанные коррозионные повреждения могут иметь синэнергетический эффект, так что суммарный ущерб от совместного действия разных факторов коррозии может превысить сумму ущерба от отдельных видов коррозии.

Как правило, действие коррозионных агентов усиливает нестабильный тепловой режим котла, что вызывает коррозионную усталость и возбуждает термоусталостную коррозию: число пусков из холодного состояния - более 100, общее число пусков - более 200. Так как эти виды разрушений металла проявляются редко, то трещины, разрыв труб имеют вид, идентичный поражениям металла от разных видов коррозии.

Обычно для идентификации причины разрушения металла требуются дополнительно металлографические исследования: рентгенография, ультразвук, цветная и магнито-порошковая дефектоскопия.

Разными исследователями были предложены программы диагностирования видов коррозионных повреждений котельных сталей. Известны программа ВТИ (А.Ф. Богачев с сотрудниками) - в основном для энергетических котлов высокого давления, и разработки объединения «Энергочермет» - в основном для энергетических котлов низкого и среднего давления и котлов-утилизаторов.

просмотров