Раздельное дымоудаление настенного котла. Монтаж коаксиальной и раздельной систем дымоудаления

Раздельное дымоудаление настенного котла. Монтаж коаксиальной и раздельной систем дымоудаления

Виртуальные частицы - это абстрация, которая возникает в формализме пертурбативной квантовой теории поля.
Оказалось, что напрямую решать уравнения квантового поля, которое взаимодействует с другим квантовым полем обычно очень сложно. Поэтому люди придумали такой подход, называется пертурбативная квантовая теория поля. В физике частиц (на том же коллайдере) обычно сначала какие-то частицы слетаются издалека (где их взаимодействие друг с другом мало), как-то взаимодействуют, и потом разлетаются далеко (где их взаимодействие опять мало). Поэтому люди решили, что такой процесс можно описать, взяв за основу теорию свободных, не взаимодействующих вообще частиц (такую теорию решить легко), а дальше порядок за порядком вводить в такую теорию взаимодействие как малое возмущение. То есть математически разложить полную теорию в ряд по константе связи (характеристика, описывающая взаимодействия, такая как постоянная тонкой структуры, например) в окрестности свободной теории. Такой подход называется теорией возмущений, или пертурбативной квантовой теорией поля.

Оказалось, что когда так делаешь, то получается очень наглядная картинка, то что вы видите в описании вопроса. Процессы взаимодействия частиц в каждом порядке описываются как сумма диаграмм, где в вершинах стоят элементарные взаимодействия (которые мы и вводим порядок за порядком), а между этими вершинами пролетают возмущения (частицы) свободного квантового поля, но немного другого рода, чем обычные частицы, они отличаются тем, что у них не всегда E_0 = m c^2 (или, что более правильно E^2 - p^2 c^2 = m^2 c^4). Такие внутренние частицы не могут вылетать из диаграммы наружу, их и называют виртуальными. Чтобы, соответственно, получить точный ответ в такой постановке вопроса, надо просуммировать все возможные диаграммы со всем возможным количеством вершин, которые подходят под нужный процесс. Реально, достаточно взять сумму небольшого числа диаграмм, которые вносят самый большой вклад.
Поскольку картинка получилась очень уж наглядной, люди стали говорить что взаимодействия реальных частиц - это их обмен виртуальными, и вообще перетрактовывать любой процесс в рамках этих самых виртуальных частиц.
Такая картина права только наполовину, она права в том, что рассеяние частиц осуществляется посредством сложных взаимодействий квантовых полей друг с другом. Но сами виртуальные частицы - это не физика, это техника расчета определенных величин. Достоинство ее в том, что она работает в очень большом числе случаев. Есть другие менее универсальные техники, где никаких виртуальных частиц нет, например, бутстрап. Есть случаи, когда эта техника неприменима, например, когда константа связи слишком большая или есть всякие эффекты, которые принципиально не подпадают под теорию возмущений, например, инстантоны. Самый простой пример процесса, где описание через виртуальные частицы не работает - это эффект Швингера, рождение электрон-позитронных пар в сильном электрическом поле.
Отвечая конкретно на ваш вопрос, мы не наблюдаем флуктуирующий вакуум, мы наблюдаем что будет, если в вакуум отправить какие-то частицы или поместить какие-то объекты. В некоторых случаях имеет смысл описывать такие процессы в рамках теории возмущений, тогда наглядно процесс можно представить как то что реальные частицы взаимодействуют с какими-то виртуальными, возникшими из вакуума. Но так как по сути своей виртуальные частицы суть элементы даже не теории, а техники расчета физических величин в квантовой теории поля, не думаю, что вопрос о том сколько виртуальных частиц рождается в вакууме в единицу времени имеет смысл.

А он и не виртуальными частицами объясняется. Возьмем гармонический осциллятор в квантовой механике, у него есть уровни энергии, есть основное состояние и возбужденные. Если рисовать аналогию с квантовой теорией поля, то основное состояние - это вакуум, а возбужденные состояния - это состояния квантового поля с каким-то количеством частиц. Так вот, эффект Казимира возникает исключительно из-за особенностей вакуумного состояния. Вакуумное состояние в промежутке между двумя пластинами отличается от вакуумного состояния вне их. Как в случае со светом между двумя пластинами, он должен образовывать стоячие волны, также в случая и с фотонами между двумя пластинами, они должны иметь определенные волновые числа. Так же и с нулевыми модами, вакуумных мод в промежутке между пластинами меньше, чем снаружи. Из-за этой разницы возникает эффект Казимира. Вакуумные моды не есть виртуальные частицы, они ни с чем никак сами по себе не взаимодействуют, ничего не рассеивают.
То что я сказал, что виртуальные частицы - это абстракция, это не значит, что квантовое поле - это что-то очень простое, и там не может быть странных эффектов. Я хочу добавить, что я не говорю сейчас что-то шокирующе новое, все это есть в любом учебнике по квантовой теории поля, просто это отличается от того, что в итоге оказывается в популярных источниках.

Котлы различают по следующим признакам:

По назначению:

Энергетически е – вырабатывающие пар для паровых турбин; их отличает высокая производительность, повышенные параметры пара.

Промышленные – вырабатывающие пар как для паровых турбин, так и для технологических нужд предприятия.

Отопительные – производящие пар для отопления промышленных,жилых и общественных зданий. К ним относятся и водогрейные котлы. Водогрейный котел – устройство, предназначенное для получения горячей воды с давлением выше атмосферного.

Котлы-утилизаторы - предназначены для получения пара или горячей воды за счет использования тепла вторичных энергетических ресурсов (ВЭР) при переработке отходов химических производств, бытового мусора и т.д.

Энерготехнологические – предназначены для получения пара за счет ВЭР и являющиеся неотъемлемой частью технологического процесса (например, содорегенерационные агрегаты).

По конструкции топочного устройства (рис. 7):

Рис. 7. Общая классификация топочных устройств

Различают топки слоевые – для сжигания кускового топлива и камерные – для сжигания газового и жидкого топлива, а также твердого топлива в пылевидном (или мелкодробленом) состоянии.

Слоевые топки подразделяются на топки с плотным и кипящим слоем, а камерные – на факельные прямоточные и циклонные (вихревые).

Камерные топки для пылевидного топлива подразделяют на топки с твердым и жидким шлакоудалением. Кроме того, по конструкции они могут быть однокамерными и многокамерными, а по аэродинамическому режиму – под разрежением и под наддувом .

В основном используется схема под разряжением, когда в газоходах котла дымососом создается давление меньше атмосферного, то есть разряжение. Но в некоторых случаях при сжигании газа и мазута или твердого топлива с жидким шлакоудалением может использоваться схема под наддувом.

Схема котла под наддувом. В этих котлахвысоконапорная дутьевая установка обеспечивает избыточное давление в топочной камере 4 – 5 кПа, которое позволяет преодолеть аэродинамическое сопротивление газового тракта (рис. 8). Поэтому в этой схеме отсутствует дымосос. Газоплотность газового тракта обеспечивается установкой мембранных экранов в топочной камере и на стенах газоходов котла.

Достоинства данной схемы:

Сравнительно низкие капитальные затраты на обмуровку;

Более низкий по сравнению с котлом, работающим под

разряжением, расход электроэнергии на собственные нужды;

Более высокий КПД за счет снижения потерь с уходящими газами из-за отсутствия присосов воздуха в газовый тракт котла.

Недостаток – сложность конструкции и технологии изготовления мембранных поверхностей нагрева.

По виду теплоносителя , генерируемого котлом: паровые и водогрейные .

По перемещению газов и воды (пара):

    газотрубные (жаротрубные и с дымогарными трубами);

    водотрубные;

    комбинированные.

Схема жаротрубного котла. Котлы предназначены для замкнутых систем отопления, вентиляции и горячего водоснабжения и выпускаются для работы при допустимом рабочем давлении 6 бар и допустимой температуре воды до 115 °С. Котлы предназначены для работы на газообразном и жидком топливе, в том числе на мазуте и сырой нефти, и обеспечивают КПД при работе на газе – 92 % и на мазуте – 87 %.

Стальные водогрейные котлы имеют горизонтальную реверсивную камеру сгорания с концентрическим расположением дымогарных труб (рис. 9). Для оптимизации тепловой нагрузки, давления в камере сгорания и температуры отходящих газов дымогарные трубы оснащены турбулизаторами из нержавеющей стали.

Рис. 8. Схема котла под «наддувом»:

1 – воздухозаборная шахта; 2 – высоконапорный вентилятор;

3 – воздухоподогреватель 1-й ступени; 4 – водяной экономайзер

1-й ступени; 5 – воздухоподогреватель 2-й ступени; 6 – воздуховоды

горячего воздуха; 7 – горелочное устройство; 8 – газоплотные

экраны, выполненные из мембранных труб; 9 – газоход

Рис. 9. Схема топочной камеры жаротрубных котлов:

1 – передняя крышка;

2 – топка котла;

3 – дымогарные трубы;

4 – трубные доски;

5– каминная часть котла;

6 – люк каминной части;

7 – горелочное устройство

По способу циркуляции воды все разнообразие конструкций паровых котлов на весь диапазон рабочих давлений можно свести к трем типам:

- с естественной циркуляцией – рис. 10а;

- с многократной принудительной циркуляцией – рис. 10б;

- прямоточные – рис. 10в.

Рис. 10. Способы циркуляции воды

В котлах с естественной циркуляцией движение рабочего тела по испарительному контуру осуществляется за счет разности плотностей столбов рабочей среды: воды в опускной питательной системе и пароводяной смеси
в подъемной испарительной части циркуляцион-ного контура (рис. 10а). Движущий напор циркуляции
в контуре можно выразить формулой

, Па,

где h – высота контура, g – ускорение свободного падения, ,
– плотность воды и пароводяной смеси.

При критическом давлении рабочая среда является однофазной и ее плотность зависит только от температуры, а так как последние близки между собой в опускной и подъемной системах, то движущий напор циркуляции будет очень мал. Поэтому на практике естественная циркуляция применяется для котлов только до высоких давлений, обычно не выше 14 МПа.

Движение рабочего тела по испарительному контуру характери-зуется кратностью циркуляции К, которая представляет собой отношение часового массового расхода рабочего тела через испарительную систему котла к его часовой паропроизводительности. Для современных котлов сверхвысокого давления К=5-10, для котлов низких и средних давлений К составляет от 10 до 25.

Особенностью котлов с естественной циркуляцией является способ компоновки поверхностей нагрева, заключающийся в следующем:

В котлах с многократной принудительной циркуляцией движение рабочего тела по испарительному контуру осуществляется за счет работы циркуляционного насоса, включаемого в опускной поток рабочей жидкости (рис. 10б). Кратность циркуляции поддерживается невысокой (К=4-8), поскольку циркуляционный насос гарантирует ее сохранение при всех колебаниях нагрузки. Котлы с многократной принудительной циркуляцией позволяют экономить металл для поверхностей нагрева, так как допускаются повышенные скорости воды и рабочей смеси, частично улучшая, таким образом, охлаждение стенки труб. Габариты агрегата при этом несколько снижаются, так как диаметр трубок можно выбирать меньшим, чем для котлов с естественной циркуляцией. Эти котлы могут применяться вплоть до критических давлений 22,5 МПа, наличие барабана дает возможность хорошо осушать пар и продувать загрязненную котловую воду.

В прямоточных котлах (рис. 10в) кратность циркуляции равна единице и движение рабочего тела от входа в экономайзер и до выхода из агрегата перегретого пара принудительное, осуществляемое питательным насосом. Барабан (достаточно дорогой элемент) отсутствует, что дает при сверхвысоком давлении известное преимущество прямоточным агрегатам; однако это обстоятельство вызывает при сверхкритическом давлении удорожание станционной водоподготовки, поскольку повышаются требования к чистоте питательной воды, которая должна в этом случае содержать примесей не больше, чем выдаваемый котлом пар. Прямоточные котла универсальны по рабочему давлению, а на закритическом давлении вообще являются единственными генераторами пара и находят широкое применение в современной электроэнергетике.

Существует разновидность циркуляции воды в прямоточных парогенераторах – комбинированная циркуляция, осуществляемая за счет особого насоса или дополнительного параллельного циркуляционного контура естественной циркуляции в испарительной части прямоточного котла, позволяющая улучшить охлаждение экранных труб при малых нагрузках котла за счет увеличения на 20–30 % массы циркулируемой через них рабочей среды.

Схема котла с многократной принудительной циркуляцией на докритическое давление представлена на рис. 11.

Рис. 11. Конструктивная схема котла с многократной принудительной циркуляцией:

1 – экономайзер; 2 – барабан;

3 – опускная питательная труба; 4 – циркуляционный насос; 5 – раздача воды по циркуляционным контурам;

6 – испарительные радиа-ционные поверхности нагрева;

7 – фестон; 8 – пароперегреватель;

9 – воздухоподогреватель

Циркуляционный насос 4 работает с перепадом давления 0,3 МПа и позволяет применять трубы малого диаметра, что дает экономию металла. Малый диаметр труб и невысокая кратность циркуляции (4 – 8) вызывают относительное снижение водяного объема агрегата, следовательно, снижение габаритов барабана, уменьшение сверлений в нем, а отсюда общее снижение стоимости котла.

Малый объем и независимость полезного напора циркуляции от нагрузки позволяют быстро растапливать и останавливать агрегат, т.е. работать в регулировочно-пусковом режиме. Область применения котлов с многократной принудительной циркуляцией ограничивается сравнительно невысокими давлениями, при которых можно получать наибольший экономический эффект за счет удешевления развитых конвективных испарительных поверхностей нагрева. Котлы с многократной принуди-тельной циркуляцией нашли распространение в теплоутилизационных и парогазовых установках.

Прямоточные котлы. Прямоточные котлы не имеют зафиксированной границы между экономайзером и испарительной частью, между испарительной поверхностью нагрева и пароперегревателем. При изменении температуры питательной воды, рабочего давления в агрегате, воздушного режима топки, влажности топлива и других факторов соотношения между поверхностями нагрева экономайзера, испарительной части и перегревателя меняются. Так, при понижении давления в котле снижается теплота жидкости, повышается теплота испарения и снижается теплота перегрева, поэтому уменьшается зона, занимаемая экономайзером (зона подогрева), растет зона испарений и уменьшается зона перегрева.

В прямоточных агрегатах все примеси, поступающие с питательной водой, не могут удаляться с продувкой подобно барабанным котлам и откладываются на стенках поверхностей нагрева или уносятся с паром в турбину. Поэтому прямоточные котлы предъявляют высокие требования к качеству питательной воды.

Для уменьшения опасности пережога труб из-за отложения солей в них зону, в которой испаряются последние капли влаги и начинается перегрев пара, на докритических давлениях выносят из топки в конвективный газоход (так называемая вынесенная переходная зона ).

В переходной зоне идет энергичное выпадение и отложение примесей, а так как температура стенки металла труб в переходной зоне ниже, чем в топке, то опасность пережога труб значительно снижается и толщину отложений можно допускать большей. Соответственно удлиняется межпромывочная рабочая кампания котла.

Для агрегатов закритических давлений переходная зона, т.е. зона усиленного выпадения солей, также имеется, но она сильно растянута. Так, если для высоких давлений ее энтальпия измеряется величиной 200-250 кДж/кг, то для закритических давлений возрастает до 800 кДж/кг, и тогда выполнение вынесенной переходной зоны становится нецелесообразным, тем более, что содержание солей в питательной воде здесь так мало, что практически равно их растворимости в паре. Поэтому, если котел, спроектированный на закритическое давление, имеет вынесенную переходную зону, то делается это только из соображений обычного охлаждения дымовых газов.

Из-за малого аккумулирующего объема воды у прямоточных котлов важную роль играет синхронность подачи воды, топлива и воздуха. При нарушении этого соответствия в турбину можно подать влажный или чрезмерно перегретый пар, в связи с чем для прямоточных агрегатов автоматизация регулирования всех процессов является просто обязательной.

Прямоточные котлы конструкции профессора Л.К. Рамзина. Особенностью котла является компоновка радиационных поверхностей нагрева в виде горизонтально-подъемной навивки трубок по стенам топки с минимумом коллекторов (рис. 12).

Рис. 12. Конструктивная схема прямоточного котла Рамзина:

1 – экономайзер; 2 – перепускные необогреваемые трубы;

3 – нижний распределительный коллектор воды; 4 – экранные

трубы; 5 – верхний сборный коллектор смеси; 6 – вынесенная

переходная зона; 7 - настенная часть перегревателя;

8 – конвективная часть перегревателя; 9 –воздухоподогреватель;

10 – горелка

Как в дальнейшем показала практика, такое экранирование имеет как положительные, так и отрицательные стороны. Позитивным является равномерный обогрев отдельных трубок, включенных в ленту, так как трубки проходят по высоте топки все температурные зоны в одинаковых условиях. Негативным – невозможность выполнения радиационных поверхностей заводскими крупными блоками, а также повышенная склонность к теплогидравлическим разверкам (неравномерное распределение температуры и давления в трубах по ширине газохода) при сверхвысоком и сверхкритическом давлении из-за большого приращения энтальпии в длинном змеевике.

Для всех систем прямоточных агрегатов соблюдаются некоторые общие требования. Так, в конвективном экономайзере питательная вода до поступления в топочные экраны не догревается до кипения примерно на 30 °С, что устраняет образование пароводяной смеси и неравномерное ее распределение по параллельным трубкам экранов. Далее, в зоне активного горения топлива, в экранах обеспечивается достаточно высокая массовая скорость ρω ≥ 1500 кг/(м 2 ·с) при номинальной паропроизводительности D н, что гарантирует надежное охлаждение трубок экранов. Около 70 – 80 % воды превращается в пар в экранах топки, а в переходной зоне испаряется оставшаяся влага и весь пар перегревается на 10-15 °С во избежание отложения солей в верхней радиационной части перегревателя.

Кроме того, паровые котлы классифицируются по давлению пара и по паропроизводительности.

По давлению пара:

    низкого – до 1 МПа;

    среднего от 1 до 10 МПа;

    высокого – 14 МПа;

    сверхвысокого – 18-20 МПа;

    сверхкритического – 22,5 МПа и выше.

По производительности:

    малая –до 50 т/ч;

    средняя – 50-240 т/ч;

    большая (энергетическая) – свыше 400 т/ч.

Маркировка котлов

Для маркировки котлов установлены следующие индексы:

вид топлив а : К – каменный уголь; Б – бурый уголь; С – сланцы; М – мазут; Г – газ (при сжигании мазута и газа в камерной топке индекс типа топки не указывается); О – отходы, мусор; Д – другие виды топлива;

тип топки : Т – камерная топка с твердым шлакоудалением; Ж – камерная топка с жидким шлакоудалением; Р – слоевая топка (индекс вида топлива, сжигаемого в слоевой топке, в обозначении не указывается); В – вихревая топка; Ц – циклонная топка; Ф – топка с кипящим слоем; в обозначение котлов с наддувом вводится индекс Н ; при сейсмически стойком исполнении – индекс С .

способ циркляции : Е – естественная; Пр – многократная принудительная;

Пп – прямоточные котлы.

Цифрами указывается:

для паровых котлов – паропроизводительность (т/ч), давление перегретого пара (бар), температура перегретого пара (°С);

для водогрейных – теплопроизводительность (МВт).

Например: Пп1600–255–570 Ж . Прямоточный котел паропроизводи-тельностью 1600 т/ч, давление перегретого пара – 255 бар, температура пара – 570 °С, топка с жидким шлакоудалением.

Компоновка котлов

Под компоновкой котла подра­зумевается взаимное расположение газохо­дов и поверхностей нагрева (рис. 13).

Рис. 13. Схемы компоновки котлов:

а ­­– П-образная компоновка; б – двухходовая компоновка; в – компоновка с двумя конвективными шахтами (Т-образная); г – компоновка с U-образными конвективными шахтами; д – компоновка с инверторной топкой; е – башенная компоновка

Наиболее распространена П-образная компоновка (рис.13а – одноходовая , 13б – двухходовая ). Преимуществами ее являются подача топлива в нижнюю часть топки и вывод продуктов сгорания из нижней части конвективной шахты. Недостатки этой компоновки - неравномерное заполнение газами топочной камеры и неравномерное омы­вание продуктами сгорания поверхностей на­грева, расположенных в верхней части агре­гата, а также неравномерная концентрация золы по сечению конвективной шахты.

Т-образная компоновка с двумя конвек­тивными шахтами, расположенными по обе стороны топки с подъемным движением газов в топке (рис. 13в), позволяет уменьшить глубину конвективной шахты и высоту гори­зонтального газохода, но наличие двух кон­вективных шахт усложняет отвод газов.

Трехходовая компоновка агрегата с дву­мя конвективными шахтами (рис. 13г) иногда применяется при верхнем распо­ложении дымососов.

Четырехходовая компоновка (Т-образная двухходовая) с двумя вертикальными пе­реходными газоходами, заполненными разря­женными поверхностями нагрева, применяет­ся при работе агрегата на зольном топливе с легкоплавкой золой.

Башенная компоновка (рис. 13е) используется для пиковых парогенераторов, работающих на газе и мазуте в целях ис­пользования самотяги газоходов. При этом возникают затруднения, связанные с креплением конвек­тивных поверхностей нагрева.

U – образная компоновка с инверторной топкой с нисходящим в ней потоком продуктов сгорания и подъемным их движением в конвективной шахте (рис. 13д) обеспечивает хорошее заполнение топки факелом, низкое расположение пароперегревателей и минимальное сопротивление воздушного тракта вследствие малой длины воздуховодов. Недостаток такой компоновки – ухудшенная аэродинамика переходного газохода, обусловленная расположением горелок, дымососов и вентиляторов на большой высоте. Такая компоновка может оказаться целесообразной при работе котла на газе и мазуте.

Возникновение пожара опасно не столько наличием открытого огня, сколько задымлением помещений. Даже небольшой очаг возгорания может вызвать появление такого количества дыма, что станет проблематичным вывод людей, затруднены . Наличие в воздухе продуктов горения затрудняет дыхание, дезориентирует в пространстве, вызывает панику. Эти угрозы требуют наличия соответствующих вентиляционных систем, осуществляющих эффективное дымоудаление, а также способствующих оперативному решению возникших проблем. Такие системы существуют, они активно используются в разных зданиях, промышленных цехах или иных сооружениях.

Система дымоудаления – специализированный комплекс вентиляционного оборудования, предназначенный для оперативного вывода продуктов горения из помещений, освобождения от дыма путей эвакуации людей и способствующий правильной организации мероприятий по устранению возгорания.

Основным участком охвата системы являются лестничные клетки, шахты лифтов, коридоры по пути следования при эвакуации. Выполняются следующие функции:

  • Сокращается возможность распространения огня.

  • Снижается количество дыма.

  • Обеспечивается возможность нормального пожаротушения.

  • Снижается температура воздуха.

  • Осуществляется контроль и оповещение о возникшем возгорании.

  • Открытие люков, клапанов, окон для эффективного вывода продуктов горения.

Комплекс дымоудаления – протяженная и сложная система, действующая по разным схемам, дающая возможность перераспределения воздушных потоков по мере необходимости.

Конструкция и устройство

Вентиляция дымоудаления состоит из следующих узлов:

  • Вентиляторы дымоудаления. Осуществляют вытяжку или приток свежего воздуха в задымленные помещения.

Мнение эксперта

Федоров Максим Олегович

Важно! В любом случае используются все возможные средства, позволяющие в кратчайшие сроки устранить задымление и восстановить нормальный микроклимат в помещениях, соответствующий санитарным нормам.

Оборудование, входящее в состав комплекса

В качестве вентиляторов дымоудаления используются устройства, обладающее соответствующими характеристиками. Условия эксплуатации требуют наличия высокой категории теплостойкости – от 400°С до 600°С. Рабочие колеса могут изготавливаться из нержавеющей стали или обладать защитным покрытием, предохраняющим от воздействия агрессивных продуктов горения.

Воздуховоды дымоудаления изготавливаются из углеродистой или оцинкованной стали и имеют повышенные требования к герметичности – категории «Н» (нормальное исполнение) или «П» (плотное).

Люки дымоудаления, используемые для системы, имеют нормально закрытое положение, открываются по команде с датчиков или с пульта управления. Все элементы должны быть рассчитаны на работу при высоких температурах и в агрессивной среде.

Расчет дымоудаления

Расчет системы – сложная многоступенчатая задача. Определяются все возможные каналы отвода газов или продуктов горения – от уже имеющихся коридоров, лестничных клеток и т.д. до новых, дополнительно установленных . По величине каналов или объемам помещений вычисляется производительность вентиляторов, по количеству помещений и коридоров определяется число клапанов дымоудаления, а также противопожарных клапанов. Какой-то единой методики расчета не существует, поскольку конфигурация помещений и воздуховодов для вывода дыма может быть разной.

Методика расчета сложна и требует участия подготовленных специалистов. Если по каким-либо причинам онлайн-калькуляторы не подходят для решения возникших вопросов, то следует обратиться в специализированную организацию и заказать расчет у них. Потребуется обследование специалистами имеющихся помещений, возможных путей вывода продуктов горения, определение порядка эвакуации людей и т. д. Все эти расчеты должны опираться на требования СНиП, соответствовать противопожарным и санитарным нормам.

Мнение эксперта

Инженер теплоснабжения и вентиляции РСВ

Федоров Максим Олегович

Важно! Самостоятельный расчет комплекса дымоудаления – высокий риск свершения ошибок, происходящих от отсутствия опыта.

Эксплуатация

Налаженная система вывода продуктов горения эксплуатируется в соответствии с требованиями нормативов или СНиП. Составляется график проверок оборудования, производятся все необходимые мероприятия по поддержанию всех элементов в рабочем состоянии. Сложность в том, что система не работает постоянно, простаивающее оборудование имеет высокую вероятность отказа. Ответственность комплекса велика, экономия на обслуживании, контрольных мероприятиях недопустима.

Системы дымоудаления зачастую важнее систем пожаротушения, поскольку даже при малом очаге горения, не угрожающем никаким материальным ценностям или людям, величина задымления может оказаться критической и повлечь за собой сложности в осуществлении мероприятий по тушению пожара или даже человеческие жертвы. Отравление продуктами горения вызывает панику, дезориентацию, когда человек не понимает, в какую сторону ему следует бежать. Ответственность высока и требует соответствующего отношения со стороны руководства и персонала.

Как работает клапан дымоудаления

Специальные белые трубы и поворотные отводы для устройства раздельного дымоудаления от различных газовых котлов. Детали изготовлены из алюминиевого сплава, покраска в белый цвет произведена под высокой температурой качественной порошковой эмалью. Одинаково устанавливается на удаление угарного газа и притока воздуха для горения. Предназначена только для котлов с закрытой камерой сгорания на которых устанавливается различной конструкции адаптер или с уже присутствующими в конструкции патрубками.

Детали для устройства раздельного дымохода 80/80:

Труба в диаметре 80 мм.

  1. Длина трубки 250 мм. = 300 р
  2. Длина трубки 500 мм. = 400 р
  3. Длина трубки 1000 мм. = 600 р
  4. Длина трубки 1500 мм. = Отсутствует
  5. Длина трубки 2000 мм. = Отсутствует

Раструбная система сборки, в комплекте поставляется резиновый уплотнитель рассчитанный на высокую температуру отходящих газов из настенного котла.

Отводы и уголки диаметром 80 мм.

  1. Отвод с прямым углом 90 градусов = 450 р.
  2. Отвод с косым углом 45 градусов = 450 р.

Собирается довольно просто через раструб с резиновой манжетой.

Это высококачественные алюминиевые системы дымоудаления для настенных котлов с закрытой камерой сгорания, позволяющие укомплектовать более 80% всех известных моделей настенных котлов от крупнейших мировых производителей, среди которых Electrolux, De Dietrich, Baxi, Ariston, Vaillant, Navien, Protherm и другие известные марки.

Раздельные системы дымоудаления

Как это работает. Забор воздуха и удаления продуктов сгорания топлива осуществляется по двум различным трубам, причем диаметр каждой составляет 80 мм. За счет увеличенного сечения длина каждого канала может достигать 20 метров. Также, за счет раздельной компоновки такие системы идеально подходят для поквартирных систем отопления. Для экономии средств и площади современные дома с поквартирной системой дымоудаления имеют всего одну шахту – дымоотводящую, а воздухозабор осуществляется с фасада здания. Это условие делает невозможным использование коаксиального дымохода в большинстве зданий с поквартирной системой отопления.

Защищает от прямого задувания сильного ветра и возможности попадания птиц и грызунов во внутрь системы дымохода. Устанавливается на трубе отводящей угарные газы, можно применять и на воздухозаборе. Присоединение происходит на без раструбную часть дымохода и фиксируется нержавеющим саморезом.

Чтобы было еще проще, можно приобрести готовые комплекты с раздельным дымоходом, комплект также будет производить забор воздуха в камеру сгорания по одной трубе, а выброс дымовых газов по другой. Материал труб – эмалированный алюминий (анти-кородаллин) или алюминий без покрытия. Обычно такие системы устанавливаются тогда, когда расстояние от котла до наружной стены превышает 5 м. (суммарная длина труб раздельного дымохода может быть до 30 м.) или когда необходимо раздельный забор воздуха и удаление дыма, например в многоэтажных домах. Адаптер в комплекте обязательно должен быть от нужного вам отопительного оборудования, или иметь возможность универсального присоединения к разным моделям газовых котлов.

Время буржуек и угольных кочегарок постепенно подходит к концу. И даже самые современные промышленные котельные вынуждены потесниться перед индивидуальными теплопунктами и все возрастающим спросом на настенные газовые котлы. Одна из причин такого всплеска популярности газовых настенных котлов - возможность установки их практически в любом помещении в сочетании с удивительной простотой монтажа и адаптивностью к любым потребностям и условиям.


В значительной мере область применения котельного оборудования расширяет предлагаемая к ним система дымоходов. Кроме обычного атмосферного дымохода, который известен нам всем с детства, появились коаксиальные дымоходы, а так же разнообразные раздельные системы.


Система дымоудаления и подачи воздуха для горения – важная часть отопительной и водонагревательной техники. От правильного подбора и установки системы дымоудаления во многом зависит срок службы Вашего котельного оборудования. О таком факторе как безопасность не стоит и говорить – угарные газы должны быть своевременно отведены с соблюдением всех противопожарных мер. Ошибки при проектировании могут сказаться как на экономичности системы отопления, так и на ее производительности.


Коаксиальные и раздельные системы дымоудаления применяются для удаления дымовых газов от бытовых газовых котлов с закрытой камерой сгорания. Они могут использоваться как в индивидуальных, так и в многоквартирных жилых домах.


Обе эти системы состоят из двух частей – дымохода и воздуховода. Дымоход должен обеспечивать полный отвод дымовых газов от котла в атмосферу, а воздуховод – подачу необходимого объема воздуха на горение газа. Забор воздуха может производиться как непосредственно снаружи здания, так и внутри помещения, в случае если оно соответствует необходимым требованиям и обеспечивает достаточную приточную вентиляцию.


  1. КОАКСИАЛЬНЫЕ СИСТЕМЫ ДЫМОХОДОВ НАСТЕННЫХ КОТЛОВ

Коаксиальная система дымоудаления применяется для удаления дымовых газов от бытовых газовых котлов с закрытой камерой сгорания, где температура дымовых газов не превышает 200 С. В установке допускается разрежение или избыточное давление до 200 Па.


Коаксиальные дымоходы обычно изготавливаются толщиной 1.0, 1.5 и 2.0 мм., круглого сечения. Внутренняя труба исполняется из алюминия, наружная – из стали или алюминия. Варианты диаметров чаще всего 60/100 или 80/125. Причем типоразмер 60/100 наиболее распространен, а 80/125 используется с настенными кондексационными котлами, или в тех случаях, когда система дымоотвода превышает 4-5 метров.


Практически все элементы коаксиальной системы универсальны – подходят любым термоблокам, в не зависимости от брэнда. Например, удлинительные участки к настенным котлам Vaillant , Buderus , Viessmann, котлам Bosch и т.д – полностью взаимозаменяемы.


Исключение составляет элемент, который крепится прямо на котел – это угловое колено или вертикальный адаптер для подключения к котлу. Угловой адаптер используется для горизонтального прохода через стену, а вертикальный – для прохода через крышу, либо в тех случаях, когда нужно смонтировать горизонтальный проход несколько выше.


Потому если Вы приобретаете комплект прохода через стену (или крышу), то его тоже нужно, как и адаптер котла, выбирать в зависимости от производителя Вашего котельного оборудования.


С внешней стороны элементы дымохода окрашиваютс я в белый цвет. Элементы коаксиальной системы могут так же использоваться совместно с элементами раздельной системы дымоходов 80/80 .


Какая то дополнительная изоляция при монтаже не требуется - минимальный отступ от горючих материалов 0 мм.


1.1 Расчет системы дымоудаления

Расчет коаксиальной системы дымоудаления необходимо производить с учетом места установки, характеристик котла и геометрии дымохода.

При расчете необходимо проверить сопротивление дымохода, и убедится что при всех возможных погодных условиях и режимах работы термоблока разряжения на входе в дымоход достаточно для преодоления сопротивления котла и самого дымохода, а так же обеспечивается достаточный приток воздуха для горения.


Следует учитывать, что обычно для диаметра 60/100 суммарная длинна дымохода не должна превышать 4.5 метра, а каждый отвод 90 градусов снижает ее еще на 0,5 метра. Если требуется большая длинна конструкции, то следует перейти на раздельную систему, или на коаксиальный дымоход диаметром 80/125.


Температура внутренней поверхности дымохода должна быть не менее 0 С. Не выполнение этого условия, в период отрицательных температур, приведет к обмерзанию конденсата внутри дымохода, сужению рабочего сечения и возможной аварийной остановке котла. Так же необходимо убедится, что температура внутренней поверхности дымохода во всех режимах превышает температуру точки росы в продуктах сгорания.


1.2 Схемы коаксиального дымоудаления

1.2.1 Горизонтальный вывод через наружную стену


Это наиболее распространенная схема построения дымохода к настенному котлу. Благодаря своей простоте и небольшой стоимости она применяется в подавляющем большинстве случаев.


|Коаксиальный дымоотвод выводится горизонтально через наружную стену. При монтаже необходимо обеспечить уклон 2-3 градуса от котла с целью исключения попадания конденсата в прибор.


Для монтажа обычно применяются стандартные базовые комплекты прохода через стену. Комплекты подбираются по типу (производителю) настенного котла. Например базовый проход через стену VAILLANT (арт. 303807) или горизонтальный комплект BUDERUS (арт. 7 747 380 027 3) отличаются угловым адаптером подключения к котлу. Остальные части одинаковые и взаимозаменяемые. И конечно, к ним можно использовать любые удлинительные элементы, например удлинение коаксиальной трубы 60/100 1 метр , или колено коаксиальное 60/100 угол 90 .


1.2.2 Вертикальный проход через крышу

В этом случае дымоход выводится верх от котла через крышу здания. При этом используется вертикальный адаптер (он одевается прямо на котел и каждого производителя он свой, смотрите например Адаптер коаксиальный вертикальный Ø60/100 BOSCH, Buderus) . Далее монтируется необходимое количество удлинительных элементов, например Труба коаксиальная 60/100 2.0 м . Завершает конструкцию сверху Терминал вертикальный Ø60/100 для прохода через крышу - он обеспечивает герметичное соединение с кровлей.

Такая схема обычно применяется в частных домах и коттеджах.


1.2.3 Подключение к коллективному дымоходу

Коаксиальный дымоход выводится в шахту коллективного дымохода. Поступление воздуха для горения происходит из свободного пространства между наружной стенки шахты и гильзой общего дымохода.

При этом необходим тщательный расчет как всей шахты, так и гильзы дымохода (площадь сечения, максимальная длинна, расстояние между приборами и т.д.) во избежание опрокидывания тяги от одного термоблока на другой.

Если такой расчет затруднен, то предпочтительно проектировать многоканальный коллективный дымоход – когда забор воздуха происходит по общему пространству, а отвод продуктов сгорания по индивидуальному каналу.

Такие системы дымоходов обычно используются в поквартирном отоплении в многоквартирных домах.





1.3 Правила монтажа коаксиальных дымоходов

1.3.1 Вертикальный участок

При проектировании и монтаже вертикального прохода через крышу необходимо руководствоваться нижеприведенной схемой.

Высота дымохода для домов с плоской крышей должна быть более 2,0 м., а если крыша прилегает к дымоходу - не менее 0.5 над прилегающей кровлей.

Во избежание попадания в котел кондексата в начале участка устанавливается Конденсатосборник коаксиальный Ø60/100 для прямоточных труб.


1.3.2 Горизонтальный участок

При монтаже горизонтального прохода через стену необходимо соблюдать следующую схему:

При проектировании дымохода важно максимально сократить его длину и количество поворотов. Желательно использовать не более 3-х поворотов 90°, так как каждый из них снижает допустимую длину дымохода в среднем на 0,5 метра.


Для отвода конденсата, предусматриваются кондексатоотводчики, а сам дымоход монтируется с уклоном 2-3 градуса от котла.


О раздельной системе дымоходов 80/80 мы поговорим в части 2 этой статьи.

просмотров